精英家教网 > 高中数学 > 题目详情
在三棱锥中,,.
(1)  求三棱锥的体积;
(2)  证明:;
(3)  求异面直线SB和AC所成角的余弦值。
(1)
(2)见解析
(3)


,
平面------------ ----------------2分
中, ,
中,
,
.--------------4分
(2)证法1:由(1)知SA="2," 在中,---6分
,∴-------------------8分
证法2:由(1)知平面,∵
,∵,,∴
又∵,∴
(3) 解法1:分别取AB、SA、 BC的中点D、E、F,
连结ED、DF、EF、AF,则,
(或其邻补角)就是异面直线SB和AC所成的角----------10分

中,
,
中,
在△DEF中,由余弦定理得
∴异面直线SB和AC所成的角的余弦值为-------------------------14分
解法2:以点A为坐标原点,AC所在的直线为y轴建立空间直角坐标系如图
则可得点A(0,0,0),C(0,1,0),B

设异面直线SB和AC所成的角为

∴异面直线SB和AC所成的角的余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 一几何体的三视图如图所示,,A1A=,AB=,AC=2,A1C1=1,在线段上且=.
(I)证明:平面⊥平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)右图为一简单组合体,其底面ABCD为正方形,平面
,且,(1)求证:BE//平面PDA;
(2)若N为线段的中点,求证:平面
(3)若,求平面PBE与平面ABCD所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形和矩形所在的平面互相垂直,

是线段的中点.
(1)求证∥平面
(2)试在线段上确定一点,使得所成的角是.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥P—ABCD中,侧面PAD是正三角形,且垂直于底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,M为PC上一点,且PA//平面BDM,
(1)求证:M为PC的中点;
(2)求证:面ADM⊥面PBC。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD.
(1)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;
(2)证明无论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在直三棱柱ABC-A1B1C1中,E是BC的中点。
(1)求异面直线AE与A1C所成的角;
(2)若G为C1C上一点,且EG⊥A1C,试确定点G的位置;


 
  (3)在(2)的条件下,求二面角A1-AG-E的大小

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知菱形中,,沿对角线折起,使二面角,则点所在平面的距离等于           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在边长为a的正方形ABCD所在平面外取一点P,使PA⊥平面ABCD,且PA=AB,在AC的延长线上取一点G。 
(1)若CG=AC,求异面直线PG与CD所成角的大小;
(2)若CG=AC,求点C到平面PBG的距离;

(3)当点G在AC的延长线上运动时(不含端点C),求二面角P-BG-C的取值范围。

查看答案和解析>>

同步练习册答案