精英家教网 > 高中数学 > 题目详情
12.已知椭圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相切,则动圆圆心M的轨迹方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x≤-2).

分析 动圆圆心为M,半径为r,已知圆圆心为C,半径为4 由题意知:MA=r,MC=r+4,或MA=r+3,MC=r,所以|MC-MA|=4 即动点M到两定点的距离之差为常数4,M在以A、C为焦点的双曲线上,且2a=4,2c=8,从而可得动圆圆心M的轨迹方程.

解答 解:动圆圆心为M,半径为r,已知圆圆心为C,半径为4 由题意知:MA=r,MC=r+4,或MA=r+3,MC=r,
所以|MC-MA|=4
即动点M到两定点的距离之差为常数4,M在以A、C为焦点的双曲线上,且2a=4,2c=8
∴b=2$\sqrt{3}$,
∴动圆圆心M的轨迹方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.
故答案为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

点评 本题考查圆与圆的位置关系,考查双曲线的定义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.点A、B、C、D在同一个球的球面上,${A}{B}={B}C=\sqrt{2}$,AC=2,若四面体ABCD体积的最大值为$\frac{2}{3}$,则这个球的表面积为(  )
A.B.$\frac{25π}{4}$C.$\frac{25π}{16}$D.$\frac{125π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙两地相距200千米,小型卡车从甲地匀速行驶到乙地,速度不得超过150千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(单位:千米/小时)的平方成正比,且比例系数为$\frac{1}{250}$;固定部分为40元.
(1)把全程运输成本y元表示为速度v千米/小时的函数,并指出这个函数的定义域,
(2)为了使全程运输成本最小,卡车应以多大速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.经过点 P(1,1)的直线在两坐标轴上的截距都是正数,若使截距之和最小,则该直线的方程是x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:f(x)=ax2-ax-2
(1)?x∈R,使f(x)≤0恒成立,求实数a的取值范围;
(2)?x∈R,使f(x)≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和记为Sn,且满足Sn=2an-n(n∈N*).
(1)求a1,a2的值,并证明:数列{an+1}是等比数列;
(2)证明:$\frac{n}{2}-\frac{1}{3}<\frac{a_1}{a_2}+\frac{a_2}{a_3}+…+\frac{a_n}{{{a_{n+1}}}}<\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正三棱锥P-ABC中,底边AB=8,顶角∠APB=90°,则过P、A、B、C四点的球体的表面积是(  )
A.384πB.192πC.96πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设△ABC的三个内角A,B,C的对边分别为a,b,c,且cos(B-C)+cosA=$\frac{3}{2}$,a2=bc.
(1)求角A的大小;
(2)名△ABC的面积为4$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点到左焦点的最大距离是$\sqrt{3}+\sqrt{2}$,且点M(1,e)在椭圆C上,其中e为椭圆C的离心率,A,B是椭圆C上的两点,且|AB|=$\sqrt{3}$.
(1)求椭圆C的方程;
(2)求△AOB面积的取值范围.

查看答案和解析>>

同步练习册答案