科目:高中数学 来源:“伴你学”新课程 数学·选修1-2(人教B版) 人教B版 题型:013
如图,因为AB∥CD,所以∠1=∠2,又因为∠2=∠3,所以∠1=∠3.所用的推理规则为
假言推理
关系推理
完全归纳推理
三段论推理
查看答案和解析>>
科目:高中数学 来源:全优设计选修数学-2-2苏教版 苏教版 题型:044
指出下列推理的两个步骤分别遵循哪种推理规则?
如图,因为四边形ABCD是平行四边形.
所以AB=CD,BC=AD.
又因为△ABC和△CDA的三边对应相等.
所以△ABC≌△CDA.
查看答案和解析>>
科目:高中数学 来源:2013届辽宁省盘锦市高二下期中理科数学试卷(解析版) 题型:选择题
在数学证明中,①假言推理、②三段论推理、③传递关系推理、④完全归纳推理,是经常使用的四种演绎推理,下面推理过程使用到上述推理规则中的( )如(右图)
因为lAB,所以又因为AB//CD,所以
所以
A. ①②③ B.②③④
C. ②③ D.①②③④
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(天津卷解析版) 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)证明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.
【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)证明:易得,于是,所以
(2) ,设平面PCD的法向量,
则,即.不防设,可得.可取平面PAC的法向量于是从而.
所以二面角A-PC-D的正弦值为.
(3)设点E的坐标为(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)证明:由,可得,又由,,故.又,所以.
(2)如图,作于点H,连接DH.由,,可得.
因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值为.
(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com