精英家教网 > 高中数学 > 题目详情

(本小题满分16分)如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设所成的小于的角为

(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角

(Ⅰ);(Ⅱ)最小费用为万元,相应的角.

解析试题分析:(Ⅰ)把的长度分别用表示,分别求出费用相加即可;(Ⅱ)对(Ⅰ)中函数,用导数为工具,判断其单调区间,求出最小值.
试题解析:(Ⅰ)如图,过,垂足为,由题意得
故有.       4分
所以   5分

.      8分
(Ⅱ)设(其中),
.            10分
,即,得.             11分
列表






+
0
-

单调递增
极大值
单调递减
所以当时有,此时有.       15分
答:排管的最小费用为万元,相应的角.            16分
考点:函数的应用、导数的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数,若在点处的切线斜率为
(Ⅰ)用表示
(Ⅱ)设,若对定义域内的恒成立,
(ⅰ)求实数的取值范围;
(ⅱ)对任意的,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已函数是定义在上的奇函数,在.
(1)求函数的解析式;并判断上的单调性(不要求证明);
(2)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,不等式恒成立,求实数的取值范围.
(Ⅲ)求证:,e是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的图象在处的切线与轴平行.
(1)确定实数的正、负号;
(2)若函数在区间上有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值。
(Ⅰ)证明:
(Ⅱ)是否存在实数,使得对任意?若存在,求的所有值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ) 若函数处的切线方程为,求实数的值.
(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案