精英家教网 > 高中数学 > 题目详情
10.函数f(x)=$\frac{1}{\sqrt{2-x}}$+(x-1)0的定义域是{x|x<2且x≠1}.

分析 根据函数的解析式和求函数定义域的法则,列出不等式组求出解集,即可得到答案.

解答 解:要使函数f(x)=$\frac{1}{\sqrt{2-x}}$+(x-1)0有意义,
则x必须满足$\left\{\begin{array}{l}{2-x>0}\\{x-1≠0}\end{array}\right.$,
解得x<2且x≠1,
所以函数f(x)的定义域是{x|x<2且x≠1},
故答案为:{x|x<2且x≠1}.

点评 本题考查了函数的定义域,熟练掌握求函数定义域的法则是解题的关键,函数的定义域要用集合或区间的形式表示,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.A为三角形ABC的一个内角.若sinA+cosA=$\frac{12}{25}$,2sinBcosC=sinA,则这个三角形的形状不可能为(  )
A.锐角三角形B.钝角三角形
C.等腰且钝角三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面α,β,γ,且α⊥γ,β∥α,求证:β⊥γ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.从集合{1,2,3,4,5,6,7}中任取五个不同元素构成数列a1,a2,a3,a4,a5,其中是a3是a1和a5的等差中项,且a2<a4,这样的数列共有108.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若cosα=$\frac{k+1}{k-3}$,sinα=$\frac{k-1}{k-3}$,则tanα的值为(  )
A.$\frac{3}{4}$或0B.$\frac{4}{3}$或0C.-$\frac{3}{4}$或0D.-$\frac{4}{3}$或0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:$\frac{1+cosα+cos2α+cos3α}{2co{s}^{2}α+cosα-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a}&{x<0}\\{lnx}&{x>0}\end{array}\right.$,若函数f(x)的图象在点A、B处的切线重合,则a的取值范围是(  )
A.(-1,+∞)B.(-ln2,+∞)C.(-2,-1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.f(x)=(3-x)6-x(3-x)5的展开式中,含x3项的系数为-810.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=2|x-3|+|x-4|,x∈[2,6].若不等式|f(x)|<2a的解集不是空集,则a的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案