精英家教网 > 高中数学 > 题目详情
如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.
(1)证明:如图所示,取CD的中点E,连接PE,EM,EA,
∵△PCD为正三角形,
∴PE⊥CD,PE=PDsin∠PDE=2sin60°=
3

∵平面PCD⊥平面ABCD,
∴PE⊥平面ABCD,而AM?平面ABCD,∴PE⊥AM.
∵四边形ABCD是矩形,
∴△ADE,△ECM,△ABM均为直角三角形,
由勾股定理可求得EM=
3
,AM=
6
,AE=3,
∴EM2+AM2=AE2.∴AM⊥EM.
又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.
(2)由(1)可知:EM⊥AM,PM⊥AM,
∴∠PME是二面角P-AM-D的平面角.
在Rt△PEM中,tan∠PME=
PE
EM
=
3
3
=1,∴∠PME=45°.
∴二面角P-AM-D的大小为45°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知正四棱柱ABCD-A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC-A1B1C1中,AB=BC=CA=a,AA1=
2
a
,求AB1与侧面AC1所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为
5
的等腰三角形,则二面角V-AB-C的平面角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6

E为PC的中点.
(1)求二面角E-AD-C的正切值;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立?若存在,求出MC的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直三棱柱ABC-A1B1C1的侧棱长为1,底面ABC为直角三角形,AB=AC=1,∠BAC=90°.则二面角B1-AC-B的大小为______;点A到平面BCC1B1的距离等于______.

查看答案和解析>>

同步练习册答案