精英家教网 > 高中数学 > 题目详情

【题目】函数y=log2(x2﹣3x+2)的递减区间是(
A.(﹣∞,1)
B.(2,+∞)
C.(﹣∞,
D.( ,+∞)

【答案】A
【解析】解:由x2﹣3x+2>0,得x<1或x>2,设t=x2﹣3x+2,则y═log2t为增函数,
则根据复合函数单调性之间的关系知要求函数y=log2(x2﹣3x+2)的递减区间,
即求函数t=x2﹣3x+2的递减区间,
∵t=x2﹣3x+2的递减区间为(﹣∞,1),
∴函数y=log2(x2﹣3x+2)的递减区间是(﹣∞,1),
故选:A.
【考点精析】关于本题考查的复合函数单调性的判断方法,需要了解复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产千件,需另投入成本为万元,当年产量不足80千件时, (万元);当年产量不少于80千件时, (万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.

(1)写出年利润 (万元)关于年产量 (千件)的函数解析式;

(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,| |=| |=| |=1, ,A(1,1),则 的取值范围(
A.[﹣1﹣ ﹣1]
B.[﹣ ,﹣ + ]?
C.[ + ]
D.[1﹣ ,1+ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,最小值为2的是(
A.y=x+
B.y=sinx+ ,x∈(0,
C.y=4x+2x , x∈[0,+∞)
D.y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立;命题q:函数f(x)=lagax在(0,+∞)上递增,若p∨q为真,而p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的点到二定点 的距离之和为定值,以为圆心半径为4的圆有两交点,其中一交点为 在y轴正半轴上,圆与x轴从左至右交于二点,

(1)求曲线的方程;

(2)曲线,直线交于点,过点的直线与曲线交于二点,过的切线 交于.当x轴上方时,是否存在点满足,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每台新机随机购买第一盒墨150元,优惠0元;再每多买一盒墨都要在原优惠基础上多优惠一元,即第一盒墨没有优惠,第二盒墨优惠一元,第三盒墨优惠2元,……,依此类推,每台新机最多可随新机购买25盒墨.平时购买墨盒按零售每盒200元.

公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如下表:

消耗墨盒数

22

23

24

25

打印机台数

1

4

4

1

以这十台打印机消耗墨盒数的频率代替一台打印机消耗墨盒数发生的概率,记ξ表示两台打印机5年消耗的墨盒数.

(1)求ξ的分布列;

(2)若在购买两台新机时,每台机随机购买23盒墨,求这两台打印机正常使用五年在消耗墨盒上所需费用的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,当x∈[﹣1,0]时,函数的解析式为f(x)= (a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[﹣1,0]上的最大值.
(3)对任意的x1 , x2∈[﹣1,1]都有|f(x1)﹣f(x2)|≤M成立,求最小的整数M的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣alnx+ (a∈R) (Ⅰ)求函数f(x)单调区间;
(Ⅱ)若a=﹣1,求证:当x>1时,f(x)< x3

查看答案和解析>>

同步练习册答案