【题目】已知椭圆:经过两点,.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过椭圆的右焦点的直线交椭圆于,两点,且直线与以线段为直径的圆交于另一点(异于点),若,求直线的斜率.
科目:高中数学 来源: 题型:
【题目】中心在原点,焦点在轴上的椭圆,下顶点,且离心率.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)经过点且斜率为的直线交椭圆于, 两点.在轴上是否存在定点,使得恒成立?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个正四面体纸盒的俯视图如图所示,其中四边形ABCD是边长为的正方形,若在该正四面体纸盒内放一个正方体,使正方体可以在纸盒内任意转动,则正方体棱长的最大值是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(是自然对数的底数)
(1)若直线为曲线的一条切线,求实数的值;
(2)若函数在区间上为单调函数,求实数的取值范围;
(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场统计了2008年到2018十一年间某种生活必需品的年销售额及年销售额增速图,其中条形图表示年(单位:万元),折线图年销售额为年销售额增长率(%).
(1)由年销售额图判断,从哪年开始连续三年的年销售额方差最大?(结论不要求证明)
(2)由年销售额增长率图,可以看出2011年销售额增长率是最高的,能否表示当年销售额增长最大?(结论不要求证明)
(3)从2010年至2014年这五年中随机选出两年,求至少有一年年增长率超过20%的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
该产品的年利润(百万元) | 2.1 | 2.75 | 3.5 | 3.25 | 3 | 4.9 | 6 | 6.5 |
年返修台数(台) | 21 | 22 | 28 | 65 | 80 | 65 | 84 | 88 |
部分计算结果:,,, , |
注:年返修率=
(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, ,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com