精英家教网 > 高中数学 > 题目详情
已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈[π,2π].
(1)求|
m
+
n
|的最大值;
(2)当|
m
+
n
|=
8
2
5
时,求cos(
θ
2
+
π
8
)的值.
分析:(1)根据向量的三角形法则求出
m
n
的和,然后求出
m
+
n
的模,化简后利用特殊角的三角函数值及两角和的余弦函数公式化为一个角的余弦函数,根据根据θ的范围得到余弦函数的值域,即可得到|
m
+
n
|的最大值;
(2)由|
m
+
n
|=
8
2
5
及第一问求得的关系式得到cos(θ+
π
4
)的值,然后根据θ的范围求出
θ
2
+
π
8
的范围,利用二倍角的余弦函数公式即可求出cos(
θ
2
+
π
8
)的值.
解答:解:(1)
m
+
n
=(cosθ-sinθ+
2
,cosθ+sinθ),
|
m
+
n
|=
(cosθ-sinθ+
2
)
2
+(cosθ+sinθ)2

=
4+2
2
(cosθ-sinθ)

=
4+4cos(θ+
π
4
)

=2
1+cos(θ+
π
4
)

∵θ∈[π,2π],
4
≤θ+
π
4
4

∴cos(θ+
π
4
)≤1,|
m
+
n
|max=2
2


(2)由已知及(1)得|
m
+
n
|=
8
2
5
=2
1+cos(θ+
π
4
)

两边平方化简得cos(θ+
π
4
)=
7
25

又cos(θ+
π
4
)=2cos2
θ
2
+
π
8
)-1,
∴cos2
θ
2
+
π
8
)=
16
25

∵θ∈[π,2π],
8
θ
2
+
π
8
8

∴cos(
θ
2
+
π
8
)=-
4
5
点评:此题考查学生掌握向量的加法法则及向量模的求法,灵活运用两角和与差的余弦函数公式、二倍角的余弦函数公式及特殊角的三角函数值化简求值,是一道中档题.学生做题时应注意角的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ∈(π,2π)且|
m
+
n
|=
8
2
5
,则cos(
θ
2
+
π
8
)
=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函数f(x)=|
m
|+
m
n
且最小正周期为π,
(1)求函数,f(x)的最大值,并写出相应的x的取值集合;
(2)在△ABC中角A,B,C所对的边分别为a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省豫东、豫北十所名校高三测试理科数学试卷(解析版) 题型:解答题

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量m=(cos A,cos B),n=(2c+b,a),且m⊥n.

    (I)求角A的大小;

    (Ⅱ)若a=4,求△ABC面积的最大值.

 

查看答案和解析>>

同步练习册答案