【题目】已知函数,.
(1)当时,讨论函数的零点个数;
(2)若在上单调递增,且求c的最大值.
【答案】(1)见解析(2)2
【解析】
(1)将代入可得,令,则,设,则转化问题为与的交点问题,利用导函数判断的图象,即可求解;
(2)由题可得在上恒成立,设,利用导函数可得,则,即,再设,利用导函数求得的最小值,则,进而求解.
(1)当时,,定义域为,
由可得,
令,则,
由,得;由,得,
所以在上单调递增,在上单调递减,
则的最大值为,
且当时,;当时,,
由此作出函数的大致图象,如图所示.
由图可知,当时,直线和函数的图象有两个交点,即函数有两个零点;
当或,即或时,直线和函数的图象有一个交点,即函数有一个零点;
当即时,直线与函数的象没有交点,即函数无零点.
(2)因为在上单调递增,即在上恒成立,
设,则,
①若,则,则在上单调递减,显然,
在上不恒成立;
②若,则,在上单调递减,当时,,故,单调递减,不符合题意;
③若,当时,,单调递减,
当时,,单调递增,
所以,
由,得,
设,则,
当时,,单调递减;
当时,,单调递增,
所以,所以,
又,所以,即c的最大值为2.
科目:高中数学 来源: 题型:
【题目】某种水箱用的“浮球”是由两个相同半球和一个圆柱筒组成,它的轴截面如图所示,已知半球的直径是,圆柱筒高,为增强该“浮球”的牢固性,给“浮球”内置一“双蝶形”防压卡,防压卡由金属材料杆,,,,,及焊接而成,其中,分别是圆柱上下底面的圆心,,,,均在“浮球”的内壁上,AC,BD通过“浮球”中心,且、均与圆柱的底面垂直.
(1)设与圆柱底面所成的角为,试用表示出防压卡中四边形的面积,并写出的取值范围;
(2)研究表明,四边形的面积越大,“浮球”防压性越强,求四边形面积取最大值时,点到圆柱上底面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,是轴正半轴上两点(在的左侧),且,过,作轴的垂线,与抛物线在第一象限分别交于,两点.
(Ⅰ)若,点与抛物线的焦点重合,求直线的斜率;
(Ⅱ)若为坐标原点,记的面积为,梯形的面积为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,四边形是直角梯形,,F是的中点,E是上的一点,则下列说法正确的是( )
A.若,则平面
B.若,则四棱锥的体积是三棱锥体积的6倍
C.三棱锥中有且只有三个面是直角三角形
D.平面平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为’(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知直线与轴交于点,且与曲线交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是椭圆的左右焦点.
(Ⅰ)若是第一象限内该椭圆上的一点, ,求点的坐标.
(Ⅱ)若直线与圆相切,交椭圆于两点,是否存在这样的直线,使得?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,,.
(1)证明:平面;
(2)在线段上是否存在点,使得平面与平面所成的锐二面角为,若存在,求出线段的长度;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com