精英家教网 > 高中数学 > 题目详情
函数y=f(x)是定义域为R的奇函数,且对任意的x∈R,均有f(x+4)=f(x)成立.当x∈(0,2)时,f(x)=-x2+2x+1.
(Ⅰ)当x∈[4k-2,4k+2](k∈Z)时,求函数f(x)的表达式;
(Ⅱ)求不等式f(x)>
32
的解集.
分析:(Ⅰ)由f(x+4)=f(x),得出T=4,利用x∈(0,2)时,f(x)=-x2+2x+1.求出当x∈(-2,0)时,
f(x)=x2+2x-1.得出f(x)在一个周期长度上的解析式,再将x∈[4k-2,4k+2]转化为x∈[-2,2]上求解.
(Ⅱ)先求出不等式f(x)>
3
2
在[-2,2]上的解集,再利用周期性求出所有的结果.
解答:解:(Ⅰ)当x=0时,∵f(0)=-f(0),∴f(0)=0
当x∈(-2,0)时,-x∈(0,2),f(x)=-f(-x)=-(x2-2x+1)=x2+2x-1.
由f(x+4)=f(x)知f(x)为周期函数,且T=4.
当x∈[4k-2,4k)(k∈Z)时,x-4k∈[-2,0),
f(x)=f(x-4k)=(x-4k)2+2(x-4k)-1.
当x∈[4k,4k+2])(k∈Z)时,x-4k∈[0,2],
f(x)=f(x-4k)=-(x-4k)2+2(x-4k)+1.
故当x∈[4k-2,4k+2](k∈Z)时,(x-4k)2+2(x-4k)-1
f(x)=
(x-4k)2+2(x-4k)-1,x∈[4k-2,4k)
0x=4k
-(x-4k)2+2(x-4k)+1,x∈(4k,4k+2]

(Ⅱ)当x∈[-2,2]时,由f(x)>
3
2
,得
-2≤x<0
x2+2x-1>
3
2
0<x≤2
-x2+2x+1>
3
2

解得1-
2
2
<x<1+
2
2
,因为f(x)是以4为周期的函数,所以不等式f(x)>
3
2
的解集是{x|4k+1-
2
2
<x<4k+1+
2
2
}
点评:本题考查函数解析式求解,解不等式.考查转化计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)=ax+
1x+b
(a≠0)
的图象过点(0,-1)且与直线y=-1有且只有一个公共点;设点P(x0,y0)是函数y=f(x)图象上任意一点,过点P分别作直线y=x和直线x=1的垂线,垂足分别是M,N.
(1)求y=f(x)的解析式;
(2)证明:曲线y=f(x)的图象是一个中心对称图形,并求其对称中心Q;
(3)证明:线段PM,PN长度的乘积PM•PN为定值;并用点P横坐标x0表示四边形QMPN的面积..

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.
规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).
(1)求函数y=f(x)的解析式及定义域;
(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知:射线OA为y=kx(k>0,x>0),射线OB为y=-kx(x>0),动点P(x,y)在∠AOx的内部,PM⊥OA于M,PN⊥OB于N,四边形ONPM的面积恰为k.
(1)当k为定值时,动点P的纵坐标y是横坐标x的函数,求这个函数y=f(x)的解析式;
(2)根据k的取值范围,确定y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

某服装批发商场经营的某种服装,进货成本40元/件,对外批发价定为60元/件.该商场为了鼓励购买者大批量购买,推出优惠政策:一次购买不超过50件时,只享受批发价;一次购买超过50件时,每多购买1件,购买者所购买的所有服装可在享受批发价的基础上,再降低0.1元/件,但最低价不低于50元/件.
(Ⅰ)问一次购买150件时,每件商品售价是多少?
(Ⅱ)问一次购买200件时,每件商品售价是多少?
(Ⅲ)设购买者一次购买x件,商场的售价为y元,试写出函数y=f(x)的表达式.

查看答案和解析>>

同步练习册答案