精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax3+ax2﹣3ax+1的图象经过四个象限,则实数a的取值范围为

【答案】(﹣∞,﹣)∪( , +∞)
【解析】解:∵f(x)=ax3+ax2﹣3ax+1,
∴f′(x)=ax2+2ax﹣3a=a(x﹣1)(x+3),
令f′(x)=0,
解的x=1或x=﹣3,是函数的极值点,当a>0时,f(﹣3)是极大值,f(1)是极小值,f(﹣3)f(1)<0,当a<0时,f(﹣3)是极小值,f(1)是极大值,f(﹣3)f(1)<0,
所以,要使函数f(x)的图象经过四个象限,则f(﹣3)f(1)<0,
∵f(﹣3)=a(﹣3)3+a(﹣3)2﹣3a(﹣3)+1=9a+1,
f(1)=a+a﹣3a+1=1﹣a,
∴(9a+1)(1﹣a)<0,
即(a+)(a﹣)>0,
解的a<﹣ , 或a>
所以答案是:(﹣∞,﹣)∪( , +∞).
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的极值与导数的理解,了解求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是抛物线:上异于原点的动点, 是平面上两个定点.的纵坐标为时,点到抛物线焦点的距离为.

(1)求抛物线的方程;

2)直线于另一点,直线于另一点,记直线的斜率为,直线的斜率为. 求证: 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知一个八面体的各条棱长为1,四边形ABCD为正方形,下列说法

①该八面体的体积为;

②该八面体的外接球的表面积为;

E到平面ADF的距离为;

ECBF所成角为60°;

其中不正确的个数为

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年3月山东省高考改革实施方案发布:2020年夏季高考开始全省高考考生总成绩将由语文、数学、外语三门统一高考成绩和学生自主选择的普通高中学业水平等级性考试科目的成绩共同构成.省教育厅为了解正就读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见.右面是根据样本的调查结果绘制的等高条形图.

(Ⅰ)请根据已知条件与等高条形图完成下面的列联表:

赞成

不赞成

合计

城镇居民

农村居民

合计

(Ⅱ)试判断我们是否有95%的把握认为“赞成高考改革方案与城乡户口有关”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形和四边形所在的平面互相垂直,.

求证:(1) 平面

(2) 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°
(I)求证:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校要对如图所示的5个区域进行绿化(种花),现有4种不同颜色的花供选择,要求相邻区域不能种同一种颜色的花,则共有___________种不同的种花方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是(
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=

(1)证明:DE⊥平面ACD;
(2)求二面角B﹣AD﹣E的大小.

查看答案和解析>>

同步练习册答案