精英家教网 > 高中数学 > 题目详情
甲和乙参加智力答题活动,活动规则:①答题过程中,若答对则继续答题;若答错则停止答题;②每人最多答3个题;③答对第一题得10分,第二题得20分,第三题得30分,答错得0分。已知甲答对每个题的概率为,乙答对每个题的概率为
(1)求甲恰好得30分的概率;
(2)设乙的得分为,求的分布列和数学期望;
(3)求甲恰好比乙多30分的概率.
(1)
(2)分布列见解析       数学期望
(3)

试题分析:(1)要求甲恰好得30分的概率,我们分析活动规则后可得,甲恰好得30分,说明甲前两题都答对,而第三题答错,代入分步事件概率公式即可得到答案.
(2)设乙的得分为ξ,则ξ的取值为0,10,30,60,我们根据活动规则,分析出ξ取不同值时的情况,代入概率公式即可求解.(3)要求甲恰好比乙多30分的概率,我们要先分析甲恰好比乙多30分的发生情况,由(2)的结论,共有两种情况,即甲恰好得30分且乙恰好得0分,或是甲恰好得60分且乙恰好得30分,代入概率公式即可求解 。
解:(I)甲恰好得30分,说明甲前两题都答对,而第三题答错,其概率为,-------3分
(II)的取值为0,10, 30,60.--------4分


的概率分布如下表:

0
10
30
60





---------8分
-------10分
 (III)设甲恰好比乙多30分为事件A,甲恰好得30分且乙恰好得0分为事件B1,
甲恰好得60分且乙恰好得30分为事件B2,则A=为互斥事件.
.
所以,甲恰好比乙多30分的概率为-----------14分
点评:解决该试题的关键是对于要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

天数
6
12
   

由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.
某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
日最高气温t (单位:℃)
t22℃
22℃<t28℃
28℃<t32℃

日销售额(千元)
2
5
    6
8
(Ⅰ) 求的值;
(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;
(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个从的”闯关”游戏.

规则规定:每过一关前都要抛掷一个在各面上分别标有1,2,3,4的均匀的正四面体.在过第n(n=1,2,3)关时,需要抛掷n次正四面体,如果这n次面朝下的数字之和大于则闯关成功.
(1)求闯第一关成功的概率;
(2)记闯关成功的关数为随机变量X,求X的分布列和期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)盒子里装有6件包装完全相同的产品,已知其中有2件次品,其余4件是合格品。为了找到2件次品,只好将盒子里的这些产品包装随机打开检查,直到两件次品被全部检查或推断出来为止。记表示将两件次品被全部检查或推断出来所需检查次数。
(I)求两件次品被全部检查或推断出来所需检查次数恰为4次的概率;
(II)求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为,遇到红灯(禁止通行)的概率为假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求:
(1)的概率的分布列及期望E;
(2 ) 停车时最多已通过3个路口的概率

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某学校要对学生进行身体素质全面测试,对每位学生都要进行考核(即共项测试,随机选取项),若全部合格,则颁发合格证;若不合格,则重新参加下期的考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为,第二次参加考试合格的概率为,第三次参加考试合格的概率为,若第四次抽到可要求调换项目,其它选项小李均可一次性通过.
(1)求小李第一次考试即通过的概率
(2)求小李参加考核的次数分布列.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

随机变量X的分布列如下表:

则X的数学期望是(  )
A.1.9B.1.8C.1.7D.随m的变化而变化

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在0-1分布中,设P(X=0)=,则E(X)="              " . 

查看答案和解析>>

同步练习册答案