【题目】如图所示,某传动装置由两个陀螺,组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且,的轴相互垂直,它们相接触的直线与的轴所成角,若陀螺中圆锥的底面半径为();
(1)求陀螺的体积;
(2)当陀螺转动一圈时,陀螺中圆锥底面圆周上一点转动到点,求与之间的距离;
科目:高中数学 来源: 题型:
【题目】已知函数;
(1)当时,若,求的取值范围;
(2)若定义在上奇函数满足,且当时, ,
求在上的反函数;
(3)对于(2)中的,若关于的不等式在上恒成立,求实
数的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.
(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)
(2)先从日销售在,,内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,对于任意满足,且,数列满足,,其前项和为.
(1)求数列、的通项公式;
(2)令,数列的前项和为,求证:对于任意正整数,都有;
(3)将数列、的项按照“当为奇数时,放在前面”,“当为偶数时,放在前面”的要求进行“交叉排列”得到一个新的数列:、、、、、、、、求这个新数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在某商业区周边有 两条公路和,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与,分别交于,要求与扇形弧相切,切点不在,上.
(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;
(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若关于的不等式在上恒成立,求的取值范围;
(Ⅱ)设函数,在(Ⅰ)的条件下,试判断在上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,其中.
(1)若数列前四项,,,依次成等差数列,求,的值;
(2)若,且数列为等比数列,求的值;
(3)若,且是数列的最小项,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=,△BF1F2为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com