精英家教网 > 高中数学 > 题目详情

【题目】如图所示,某传动装置由两个陀螺组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的,且的轴相互垂直,它们相接触的直线与的轴所成角,若陀螺中圆锥的底面半径为);

1)求陀螺的体积;

2)当陀螺转动一圈时,陀螺中圆锥底面圆周上一点转动到点,求之间的距离;

【答案】1;(2.

【解析】

1)算出陀螺中的圆锥的高,再利用公式计算圆锥和圆柱的体积后可得陀螺体积.

2)先求,算出对应的圆心角的弧度数后可得弦长.

1)因为陀螺中圆锥的底面半径为,故圆锥的高为

圆柱的底面半径和高均为

故陀螺的体积为.

2)当陀螺转动一圈时,

陀螺中圆锥的底面半径为陀螺中的圆锥的高,故

所对的圆心角为

如图,弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1时,若,求的取值范围

2若定义在上奇函数满足,且当时,

上的反函数

3对于(2)中的若关于的不等式上恒成立,求实

的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.

(1)求这50天超市日销售量的平均数;(视频率为概率,以各组区间的中点值代表该组的值)

(2)先从日销售在内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且),数列满足,对任意,都有

1)求数列的通项公式;

2)令,若对任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,对于任意满足,且,数列满足,其前项和为.

1)求数列的通项公式;

2)令,数列的前项和为,求证:对于任意正整数,都有

3)将数列的项按照“当为奇数时,放在前面”,“当为偶数时,放在前面”的要求进行“交叉排列”得到一个新的数列:求这个新数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在某商业区周边有 两条公路,在点处交汇,该商业区为圆心角,半径3的扇形,现规划在该商业区外修建一条公路,与分别交于,要求与扇形弧相切,切点不在上.

(1)设试用表示新建公路的长度,求出满足的关系式,并写出的范围;

(2)设,试用表示新建公路的长度,并且确定的位置,使得新建公路的长度最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若关于的不等式上恒成立,求的取值范围;

(Ⅱ)设函数,在(Ⅰ)的条件下,试判断上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,其中

1)若数列前四项依次成等差数列,求的值;

2)若,且数列为等比数列,求的值;

3)若,且是数列的最小项,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=,△BF1F2为直角三角形.

(1)求椭圆C的方程;

(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.

查看答案和解析>>

同步练习册答案