分析 化简g(x)=$\left\{\begin{array}{l}{0,x∈[2kπ-\frac{π}{2},2kπ+\frac{π}{2}](k∈Z)}\\{2cosx,x∈(2kπ+\frac{π}{2},2kπ+\frac{3π}{2})(k∈Z)}\end{array}\right.$,从而求函数的最值.
解答 解:g(x)=f(x)-|f(x)|
=$\left\{\begin{array}{l}{0,x∈[2kπ-\frac{π}{2},2kπ+\frac{π}{2}](k∈Z)}\\{2cosx,x∈(2kπ+\frac{π}{2},2kπ+\frac{3π}{2})(k∈Z)}\end{array}\right.$,
故gmax(x)=0,
gmin(x)=g(2kπ+π)=-2,
故答案为:0,-2.
点评 本题考查了分段函数的应用及分类讨论求函数的最值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | 2 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
实物a的值 | -2 | 0 | 0.5 | 1 | 2 |
|PA|的最小值 | 0 | ||||
相应的点P坐标 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com