精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3-3(a-1)x2+4x+6a(a∈R),g(x)=4x+6.
(1)若函数y=f(x)的切线斜率的最小值为1,求实数a的值;
(2)若两个函数图象有且只有一个公共点,求实数a的取值范围.
分析:(1)先求函数的导数,利用二次函数的最小值的为1,解方程即可求得实数a的值;
(2)将题中条件:“两个函数图象有且只有一个公共点,”等价于“h(x)=f(x)-g(x)=2x3-3(a-1)x2+6(a-1)图象与x轴只有一个交点”,利用导数求得函数的极值,最后要使h(x)=f(x)-g(x)=2x3-3(a-1)x2+6(a-1)图象与x轴只有一个交点,得到关于a的不等关系,从而求实数a的取值范围.
解答:解:(1)f(x)=2x3-3(a-1)x2+4x+6a,求导得
f′(x)=6x2-6(a-1)x+4≥
4×6×4-36(a-1)2
4×6
=4-
3
2
(a-1)2=1

∴a=1±
2

(2)∵g(x)=4x+6的图象是一条直线,
因此两个函数图象有且只有一个公共点的个数取决于方程f(x)=g(x)的解的个数,
所以只需研究函数h(x)=f(x)-g(x)=2x3-3(a-1)x2+6(a-1)图象与x轴关系.
h′(x)=6x2-6(a-1)x=6x[x-(a-1)],
①当a=1时,h′(x)=6x2≥0,h(x)在R上单调递增,则h(x)与x轴只有一个交点;
②当a≠1时,h′(x)=0有两根x1=0,x2=a-1,
而h(x1)=6(a-1),h(x2)=(a-1)[6-(a-1)2],
∵h(x)与x轴只有一个交点,则需h(x1)h(x2)>0,
∴6(a-1)(a-1)[6-(a-1)2]>0,解得1-
6
<a<1+
6
且a≠1,
由①②可知实数a的取值范围为(1-
6
,1+
6
).
点评:本小题主要考查函数单调性的应用、利用导数研究函数的单调性、导数在最大值、最小值问题中的应用、不等式的解法等基础知识,考查运算求解能力,转化思想.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案