精英家教网 > 高中数学 > 题目详情
已知命题p:?x∈R,?m∈R,使关于x的方程4x-2x+1+m=0有实数解.如果¬p是真命题,则实数m的取值范围是( )
A.(-∞,1)
B.(-∞,1]
C.[1,+∞)
D.(1,+∞)
【答案】分析:本题知道¬p是真命题,则p是假命题,故将原问题转化为方程有解求参数范围的问题,解题的方法一般是将参数看作函数值,转化为求值域的问题求参数的取值范围,选出正确答案.
解答:解:4x-2x+1+m=0得m=4x-2x+1 =(2x2-2×2x=(2x-1)2+1,
由于2x >0,故(2x-1)2+1≥1,∴m≥1,
即命题p为真时,m≥1;命题p为假时,m<1.
由题意¬p是真命题,则p是假命题,
则实数m的取值范围是(-∞,1).
故选A.
点评:本题考查复合命题的真假、求函数的值域,解题的关键是将求参数取值范围的问题转化为求值域的问题,本题用到了配方法求值域,解题时要注意总结求值域的技巧.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:“?x∈R*,x>
1x
”,命题p的否定为命题q,则q是“
 
”;q的真假为
 
.(填“真”或“假”)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论:
①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;
②函数y=
|x|
x2+1
的最小值为
1
2
且它的图象关于y轴对称;
③“a>b”是“2a>2b”的充分不必要条件;
④在△ABC中,若sinAcosB=sinC,则△ABC中是直角三角形.
⑤若tanθ=2,则sin2θ=
4
5

其中正确命题的序号为
①④⑤
①④⑤
.(把你认为正确的命题序号填在横线处)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,cosx≤1,则?p命题是
?x∈R,cosx>1
?x∈R,cosx>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使tanx=1,命题q:x2-3x+2<0的解集是{x|1<x<2},下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是
①②③④
①②③④
(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,2x<3x;命题q:?x∈R,2x≥1+x2,则下列命题中为真命题的是(  )

查看答案和解析>>

同步练习册答案