精英家教网 > 高中数学 > 题目详情
16.已知圆C:(x-1)2+(y+2)2=9,直线l:y=kx+1,与圆C相交于A、B两点,O为坐标原点,并且OA⊥OB,求出直线l的方程.

分析 先设点A,B的坐标,根据OA⊥OB得到两点坐标之间的关系,然后联立直线与圆的方程消去y得到关于x的一元二次方程,再由韦达定理得到两根之和与两根之积后代入所求的关系式,即可求出k的值,从而可求得直线方程.

解答 解:设A(x1,y1),B(x2,y2
∵OA⊥OB,
∴x1x2+y1y2=0,
∵y1=kx1+1,y2=kx2+1,
∴x1x2+(kx1+1)(kx2+1)=0,
∴(1+k2)x1x2+k(x1+x2)+1=0
将y=kx+1代入圆方程得:(1+k2)x2+2(3k-1)x+1=0
∴x1+x2=$\frac{2-6k}{1+{k}^{2}}$,x1x2=$\frac{1}{1+{k}^{2}}$
∴(1+k2)$\frac{1}{1+{k}^{2}}$+k•$\frac{2-6k}{1+{k}^{2}}$+1=0,
∴2k2-k-1=0,
∴k=1或-$\frac{1}{2}$
∴所求直线方程为y=x+1或y=-$\frac{1}{2}$x+1.

点评 本题主要考查直线与圆的位置关系,考查基础知识的综合运用和灵活能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=|x3-1|+x3+ax(a∈R)
(1)解关于字母a的不等式[f(-1)]2≤f(2);
(2)a=-12,求f(x)的单调区间
(3)若a<0,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设P是椭圆$\frac{x^2}{25}+\frac{y^2}{16}=1$上的一点,F1、F2是焦点,若∠F1PF2=90°,则△PF1F2的面积为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1$的焦点为F1,F2,过F1的直线与椭圆C交于A,B两点,若△ABF2的周长是12,则椭圆C的离心率是$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=|x-1|+2
(1)求不等式f(x)<4的解集.
(2)若关于x的不等式f(x)-2m<f(x+3)的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a>0,且a≠1,函数y=2+loga(x+2)的图象恒过定点P,则P点的坐标是(  )
A.(-1,2)B.(2,-1)C.(3,-2)D.(3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:?x∈R,x2-5x+6>0,命题q:?α、β∈R,使sin(α+β)=sinα+sinβ,则下列命题为真命题的是(  )
A.p∧qB.p∨(¬q)C.(¬p)∧qD.p∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x≥0)}\\{2(x<0)}\end{array}\right.$,则f(1-2x)>f(x)的解集是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{3}$,$\frac{1}{2}$)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么范围时,才能使水池的总造价不超过61200元(规定长大于等于宽).

查看答案和解析>>

同步练习册答案