精英家教网 > 高中数学 > 题目详情

【题目】某植物园准备建一个五边形区域的盆栽馆,三角形ABE为盆裁展示区,沿AB、AE修建观赏长廊,四边形BCDE是盆栽养护区,若BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=米。

(1)求两区域边界BE的长度;

(2)若区域ABE为锐角三角形,求观赏长廊总长度AB+AE的取值范围。

【答案】(1)6米; (2)观赏长廊总长度的取值范围是(米).

【解析】

(1)在中应用余弦定理求得米,利用已知即可求得,解三角形即可.

(2)设,由正弦定理即可表示出,化简得:,结合即可求得.

(1)在中,应用余弦定理,得米,

从而米,

(2)设,则,由为锐角三角形,得

中,应用正弦定理,得

,∴

即观赏长廊总长度的取值范围是(米).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(   )

A. =(0,0),=(1,2)B. =(-1,2),=(5,-2)

C. =(3,5),=(6,10)D. =(2,-3),=(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数.

(1)求的值;

(2)证明:是区间上的减函数;

(3)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,(i)求曲线在点处的切线方程;

(ii)求函数的单调区间;

(Ⅱ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)六个从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有几种?

(2)把5件不同产品摆成一排,若产品与产品相邻,且产品与产品不相邻,则不同的摆法有几种?

(3)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法有几种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱BCF﹣ADE的侧面CFED与ABFE都是边长为1的正方形,M、N两点分别在AF和CE上,且AM=EN.
(1)求证:平面ABCD⊥平面ADE;
(2)求证:MN∥平面BCF;
(3)若点N为EC的中点,点P为EF上的动点,试求PA+PN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知sinα+cosα=

(1)求sin2α和tan2α的值;

(2)求cos(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查, 经统计“青少年”与“中老年”的人数之比为9:11

关注

不关注

合计

青少年

15

中老年

合计

50

50

100

(1)根据已知条件完成上面的列联表,并判断能否有的把握认为关注“一带一路”是否和年龄段有关?

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.

附:参考公式,其中

临界值表:

0.05

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案