精英家教网 > 高中数学 > 题目详情
11.若f(${x^{-\frac{2}{3}}}$)=${log_2}^x$则f($\frac{1}{2}$)的值等于=$\frac{3}{2}$.

分析 设${x}^{-\frac{2}{3}}$=t,t>0,则x=$\sqrt{\frac{1}{{t}^{3}}}$=${t}^{-\frac{3}{2}}$,从而f(t)=-$\frac{3}{2}lo{g}_{2}t$,由此能求出f($\frac{1}{2}$)的值.

解答 解:∵f(${x^{-\frac{2}{3}}}$)=${log_2}^x$,
设${x}^{-\frac{2}{3}}$=t,t>0,则x=$\sqrt{\frac{1}{{t}^{3}}}$=${t}^{-\frac{3}{2}}$,
∴f(t)=$lo{g}_{2}{t}^{-\frac{3}{2}}$=-$\frac{3}{2}lo{g}_{2}t$,
∴f($\frac{1}{2}$)=-$\frac{3}{2}lo{g}_{2}\frac{1}{2}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.把曲线的极坐标方程$ρ=\sqrt{2}sin({\frac{π}{4}-θ})$化为曲线的标准方程为${({x-\frac{1}{2}})^2}+{({y+\frac{1}{2}})^2}=\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cosα=-$\frac{4}{5}$($\frac{π}{2}$<α<π),则cos($\frac{π}{4}$+α)=(  )
A.-$\frac{7\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)若bn=2n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知xlnx-(1+a)x+1≥0对任意$x∈[\frac{1}{2},2]$恒成立,则实数a的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知$sin({α+\frac{π}{3}})=-\frac{1}{2}$,$α∈({\frac{2π}{3},π})$,则sinα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.北京某旅行社为某旅行团包机去旅游,期中旅行社的包机费为12000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行社的人数在30人或30人以下,则每张机票收费800元;若旅行社的人数多于30人,则给予优惠,每多一张,旅行社每张机票减少20元,但旅行社的人数最多不超过45人.
(1)写出旅行社获得的机票利润y(元)与旅行团的人数x(人)之间的函数关系式;
(2)求出当机票利润最大时旅行社的人数,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线C1参数方程:$\left\{\begin{array}{l}{x=4t}\\{y=-1+3t}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为$ρ=2\sqrt{2}cos(θ+\frac{π}{4})$
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)设曲线C1与C2公共点为A、B,点P(0,-1),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)当x>0且x≠1时,$f(x)>\frac{lnx}{x-1}+({a^2}-a-2)$,求a的取值范围.

查看答案和解析>>

同步练习册答案