精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,曲线的参数方程为为参数).

1)求曲线的普通方程;

2)经过点(平面直角坐标系中点)作直线交曲线两点,若恰好为线段的三等分点,求直线的斜率.

【答案】1;(2.

【解析】试题分析:(1)通过分类参数,根据同角三角函数的基本关系消去参数即得求曲线的普通方程;(2)写出直线的倾斜角为,得到参数方程为为参数),代入曲线的方程,根据韦达定理及两根之间的关系,列出倾斜角的关系式,转化为斜率的方程求得直线的斜率.

试题解析:(1)由曲线的参数方程,得所以曲线的普通方程为

2)设直线的倾斜角为,则直线的参数方程为为参数).代入曲线的直角坐标方程,得

所以由题意可知

所以,即,解得

所以直线的斜率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】等比数列的前项和为,已知对任意的,点均在函数 均为常数)的图象上.
(1)求的值;

(2)当时,记,证明:对任意的,不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱柱的底面是边长为2的菱形,且⊥平面的中点

(1)求证:⊥平面

(2)点在线段平面求平面和平面所成锐角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 .

(1)若,证明: 时, 成立;

(2)讨论函数的单调性;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|a|=4,|b|=3,(2a-3b)·(2ab)=61,

(1)求ab的夹角θ; (2)求|ab|;

(3)若a b,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国好声音( )》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手唱完后,四位导师为其转身的情况如下表所示:

导师转身人数(人)

4

3

2

1

获得相应导师转身的选手人数(人)

1

2

2

1

现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.

(1)求选出的两人导师为其转身的人数和为4的概率;

(2)记选出的2人导师为其转身的人数之和为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设样本x1,x2,…,x10数据的平均值和方差分别为3和5,若yi=xi+a(a为非零实数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( )

A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为2,且函数的图象与椭圆仅有两个公共点,过原点的直线与椭圆交于两点.

(1)求椭圆的标准方程;

(2)点为线段的中垂线与椭圆的一个公共点,求面积的最小值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了传承经典,促进学生课外阅读,某校从高中年级和初中年级各随机抽取100名学生进行有关对中国四大名著常识了解的竞赛.图1和图2分别是高中年级和初中年级参加竞赛的学生成绩按照分组,得到的频率分布直方图.

(1)分别计算参加这次知识竞赛的两个学段的学生的平均成绩;

(2)规定竞赛成绩达到为优秀,经统计初中年级有3名男同学,2名女同学达到优秀,现从上述5人中任选两人参加复试,求选中的2人恰好都为女生的概率;

(3)完成下列的列联表,并回答是否有99%的把握认为“两个学段的学生对四大名著的了解有差异”?

附:

临界值表:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案