精英家教网 > 高中数学 > 题目详情
19.已知函数y=f(x),x∈F.集合A={(x,y)|y=f(x),x∈F},B={(x,y)|x=1},则A∩B中所含元素的个数是(  )
A..0B..1C..0或1D..1或2

分析 根据函数的定义,在定义域内有且只有一个函数值与它对应,y=f(x)定义域是F,当F包括x=1,则x=1时候,有且只有一个函数值,所以函数图象与直线x=1只有一个交点,也就是两个集合的交集元素个数只有1个;当F包括x=1时,A∩B中所含元素的个数为0.

解答 解:当1∉F,A∩B中所含元素的个数为0;
当1∈F,A∩B中所含元素的个数为1.
∴A∩B中所含元素的个数是0或1.
故选:C.

点评 本题考查交集及其运算,解答此题的关键是对题意的理解,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.在如图的知识结构图中:“求简单函数的导数”的“上位”要素有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等边三角形ABC的边长是a,AD是BC边上的高,沿AD将△ABC折成直二面角,则点B、C的距离是(  )
A.$\frac{1}{2}$aB.$\frac{\sqrt{2}}{2}$aC.$\frac{\sqrt{3}}{2}$aD.a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=$\left\{\begin{array}{l}{sinx,-\frac{π}{2}≤x≤0}\\{a(x-1)+1,x>0}\end{array}\right.$在(-$\frac{π}{2}$,+∞)上单调递增,实数a的取值范围(  )
A.(0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知A={x|-2≤x≤5},B={x|m-1≤x≤m+1},B⊆A,则m的取值范围为[-1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\frac{{e}^{x}-{e}^{-x}}{2}$,g(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$,(e≈2.71),则
(1)函数g(f(x))的单调递增区间为(0,+∞);
(2)若有g(f(a))=f(b)+1,实数b的取值范围为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列说法中错误的是(  )
A.对于命题p:?x0∈R,使得x0+$\frac{1}{{x}_{0}}$>2,则¬p:?x∈R,均有x+$\frac{1}{x}$≤2
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
D.若p∧q为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${a_{k_n}}∈\{{a_1},{a_2},…{a_n},…\}$,且${a_{k_1}},{a_{k_2}},…,{a_{k_n}},…$成等比数列,当k1=2,k2=4时,求数列{kn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数y=$\left\{{\begin{array}{l}{{x^2}+1}&{(x≤0)}\\{-2x}&{(x>0)}\end{array}}$,则使得函数值为10的x的集合为{-3}.

查看答案和解析>>

同步练习册答案