精英家教网 > 高中数学 > 题目详情

【题目】探究函数的图象与性质.

1)下表是yx的几组对应值.

其中m的值为_______________

2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;

3)结合函数的图象,写出该函数的一条性质:_________

4)若关于x的方程2个实数根,则t的取值范围是______.

【答案】13;(2)图象见解析;(3)图象关于直线x=1轴对称.(答案不唯一);(4t1t=0.

【解析】

1)把x=3代入解析式计算即可得出m的值;

2)画出图象即可;

3)根据图象得出性质;

4)观察图象即可得出结论.

解:(1)当x=3时,y==3,∴m=3

2)如图所示:

3)图象关于直线x=1轴对称.(答案不唯一)

4)观察图象可知:当t1t=0时,关于x的方程2个实数根.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,圆的方程为,直线的极坐标方程为.

(I )写出的极坐标方程和的平面直角坐标方程;

(Ⅱ) 若直线的极坐标方程为,设的交点为的交点为的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足.

1)证明:是等比数列,是等差数列;

2)求的通项公式;

3)令,求数列的前项和的通项公式,并求数列的最大值、最小值,并指出分别是第几项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”近年来成为了百姓耳熟能详的热门词汇,对于旅游业来说,“一带一路”战略的提出,让“丝路之旅”超越了旅游产品、旅游线路的简单范畴,赋予了旅游促进跨区域融合的新理念. 而其带来的设施互通、经济合作、人员往来、文化交融更是将为相关区域旅游发展带来巨大的发展机遇.为此,旅游企业们积极拓展相关线路;各地旅游主管部门也在大力打造丝路特色旅游品牌和服务.某市旅游局为了解游客的情况,以便制定相应的策略. 在某月中随机抽取甲、乙两个景点10天的游客数,统计得到茎叶图如下:

(1)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,以每天游客人数频率作为概率.今从这段时期内任取4天,记其中游客数超过130人的天数为,求概率

(2)现从上图20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于125且不高于135人的天数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如下图表:

1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

2)估算该市80岁及以上长者占全市户籍人口的百分比;

3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下:

①80岁及以上长者每人每月发放生活补贴200元;

②80岁以下老人每人每月发放生活补贴120元;

③不能自理的老人每人每月额外发放生活补贴100元.

利用样本估计总体,试估计政府执行此计划的年度预算.(单位:亿元,结果保留两位小数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(1,0,1),平行于向量,平面过直线l与点M(1,2,3),则平面的法向量不可能是( )

A. (1,4,2)B. C. D. (0,1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,透明塑料制成的长方体ABCD﹣A1B1C1D1内灌进一些水,固定容器底面一边BC于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:

①有水的部分始终呈棱柱形;

②没有水的部分始终呈棱柱形;

③水面EFGH所在四边形的面积为定值;

④棱A1D1始终与水面所在平面平行;

⑤当容器倾斜如图(3)所示时,BEBF是定值.

其中所有正确命题的序号是 ____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱柱中,底面为正方形, 平面为棱的中点, 为棱的中点, 为棱的中点.

1)证明:平面平面

2)若,棱上有一点,且,使得二面角的余弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为点的坐标为.

(1)求过点且与圆相切的直线方程;

(2)过点任作一条直线与圆交于不同两点,且圆轴正半轴于点,求证:直线的斜率之和为定值.

查看答案和解析>>

同步练习册答案