精英家教网 > 高中数学 > 题目详情
4.在△ABC中,B($\sqrt{3}$,0)、C(-$\sqrt{3}$,0),动点A满足sinB+sinC=$\frac{2\sqrt{3}}{3}$sinA.
(1)求动点A的轨迹D的方程;
(2)若点P($\frac{1}{2}$,$\frac{1}{4}$),经过点P作一条直线l与轨迹D相交于点M,N,并且P为线段MN的中点,求直线l的方程.

分析 (1)由题意利用椭圆的定义可得A点的轨迹是以B、C为焦点的椭圆(除去左右顶点),求得a=2,又 c=$\sqrt{3}$,可得b2=a2-c2 的值,从而求得椭圆的标准方程.
(2)利用点差法以及韦达定理求得直线l的斜率,再用点斜式求得l的方程.

解答 解:(1)△ABC中,B($\sqrt{3}$,0)、C(-$\sqrt{3}$,0),动点A满足sinB+sinC=$\frac{2\sqrt{3}}{3}$sinA,
利用正弦定理可得|AC|+|AB|=$\frac{2\sqrt{3}}{3}$|BC|,即|AC|+|AB|=$\frac{2\sqrt{3}}{3}$|BC|=4>|BC|,
∴A点的轨迹是以B、C为焦点的椭圆(除去左右顶点),
∵2a=4,∴a=2,又 c=$\sqrt{3}$,∴b2=a2-c2=1,
故椭圆的标准方程为 $\frac{{x}^{2}}{4}$+y2=1.
(2)设M (x1,y1),N(x2,y2),则$\left\{\begin{array}{l}{\frac{{{x}_{1}}^{2}}{4}{{+y}_{1}}^{2}=1}\\{\frac{{{x}_{2}}^{2}}{4}{{+y}_{2}}^{2}=1}\end{array}\right.$,
两方程相减得 $\frac{{{(x}_{1}}^{2}{{-x}_{2}}^{2})}{4}$+${{y}_{1}}^{2}$-${{y}_{2}}^{2}$=0,即$\frac{{(x}_{1}{+x}_{2})•({{x}_{1}-x}_{2})}{4}$+(y1+y2)•(y1-y2)=0.
根据P($\frac{1}{2}$,$\frac{1}{4}$)为线段MN的中点,可得$\left\{\begin{array}{l}{{x}_{1}{+x}_{2}=1}\\{{y}_{1}{+y}_{2}=\frac{1}{2}}\end{array}\right.$,
∴$\frac{{x}_{1}{-x}_{2}}{4}$+$\frac{{y}_{1}{-y}_{2}}{2}$=0,∴KMN=$\frac{{y}_{1}{-y}_{2}}{{x}_{1}{-x}_{2}}$=-$\frac{1}{2}$,
所以,直线l的方程为y-$\frac{1}{4}$=-$\frac{1}{2}$(x-$\frac{1}{2}$),即 y=-$\frac{1}{2}$x+$\frac{1}{2}$.

点评 本题主要考查求点的轨迹方程的方法,椭圆的定义及标准方程,直线和圆锥曲线相交的性质,韦达定理的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数y=x2-x-1在[-1,1]上的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数(  )
A.0个B.2个C.3个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A={x|a1x2+b1x+c1>0(a1,b1,c1∈R,a1b1c1≠0)},B={x|a2x2+b2x+c2>0(a2,b2,c2∈R,a2b2c2≠0)},则A=B是$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$成立的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos(α+$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sinα+cosα等于(  )
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3•a4=117,a2+a5=-22.
(1)求通项an
(2)求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定圆⊙F1:x2+y2+4x+3=0,⊙F2:x2+y2-4x-5=0,动圆M与圆F1、F2都外切或都内切.
(1)求动圆圆心M的轨迹曲线C的方程.
(2)过点F1的直线l与曲线C交于A、B两点,与⊙F2交于P、Q两点,若|PQ|=2,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是偶函数,当x>0时,f(x)=$\frac{a{x}^{2}}{x+1}$.若曲线y=f(x)在点(-1,f(-1))处切线的斜率为-1,则实数a的值为(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1中,E、F,M分别是AB,AM,AA1的中点,P,Q分别是A1B1,A1D1上的动点(不与A1重合),且A1P=A1Q.
(1)求证:EF∥平面MPQ;
(2)当平面MPQ与平面EFM所成二面角为直二面角时,求二面角E-MP-F的余弦值.

查看答案和解析>>

同步练习册答案