精英家教网 > 高中数学 > 题目详情
已知函数(b、c为常数).
(1)若f(x)在x=1和x=3处取得极值,试求b,c的值;
(2)若f(x)在(-∞,x1)、(x2,+∞)上单调递增,且在(x1,x2)上单调递减,又满足x2-x1>1.求证:b2>2(b+2c).
【答案】分析:(1)已知函数f(x),对其进行求导,因为若f(x)在x=1和x=3处取得极值,可知1、3是方程f′(x)=0的两根,从而求出m和n;
(2)题意知,当x∈(-∞,x1)、(x2,+∞)时,f'(x)>0;当x∈(x1,x2)时,f'(x)<0,再根据韦达定理进行证明;
解答:解:(1)∵函数(b、c为常数),
∴f'(x)=x2+(b-1)x+c
据题意知1、3是方程x2+(b-1)x+c=0的两根,
∴1-b=1+3=4,c=1×3=3,
即b=-3,c=3
(2)由题意知,当x∈(-∞,x1)、(x2,+∞)时,f'(x)>0;
当x∈(x1,x2)时,f'(x)<0

则x1+x2=1-b,x1x2=c
∴b=1-(x1+x2),c=x1x2
∴b2-2(b+2c)=b2-2b-4c==
∵x2-x1>1,

∴b2>2(b+2c)
点评:此题主要考查函数在某点的极值,利用导数研究函数的单调性,这是高考必考的考点,此题是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源:全优设计必修五数学苏教版 苏教版 题型:013

已知Sk为数列{an}的前k项和,且Sk+Sk+1=ak+1(k∈N+).那么此数列是

[  ]

A.单调增数列

B.单调减函数

C.常数列

D.摆动数列

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知Sk为数列{an}的前k项和,且Sk+Sk+1=ak+1(k∈N+).那么此数列是


  1. A.
    单调增数列
  2. B.
    单调减函数
  3. C.
    常数列
  4. D.
    摆动数列

查看答案和解析>>

科目:高中数学 来源:同步题 题型:单选题

已知函数f(x)的定义域为A,如果对于属于定义域内某个区间I上的任意两个不同的自变量x1,x2,都有,则
[     ]
A.f(x)在这个区间上为增函数
B.f(x)在这个区间上为减函数
C.f(x)在这个区间上的增减性不变
D.f(x)在这个区间上为常函数

查看答案和解析>>

同步练习册答案