精英家教网 > 高中数学 > 题目详情
15.曲线f(x)=exlnx+$\frac{{2{e^{x-1}}}}{x}$在点(1,f(1))处的切线方程为(  )
A.ex-y+2-e=0B.ex+y+2-e=0C.ex-y+2+e=0D.ex+y+2+e=0

分析 求得f(x)的导数,求得切线的斜率和切点坐标,由点斜式方程可得切线的方程.

解答 解:f(x)=exlnx+$\frac{{2{e^{x-1}}}}{x}$的导数为
f′(x)=ex(lnx+$\frac{1}{x}$)+$\frac{2x{e}^{x-1}-2{e}^{x-1}}{{x}^{2}}$,
在点(1,f(1))处的切线斜率为k=e,
切点为(1,2),
在点(1,f(1))处的切线方程为y-2=e(x-1),
即有ex-y-e+2=0.
故选:A.

点评 本题考查导数的运用:求切线的方程,考查直线方程的求法,正确求导是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.下列方程是否表示椭圆,若是,指出该椭圆的焦点坐标.
(1)2x2+y2=1;
(2)$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=4;
(3)2x2+3y2=6;
(4)$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=2sin(ωx-$\frac{π}{6}$)(ω>0)的单调递增区间为[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),单调递减区间为[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z),则不等式f(x)≥-1的解集为{x|k$π+\frac{π}{12}$≤x≤k$π+\frac{2π}{3}$,k∈Z}∪{x|kπ+π≤x≤kπ+$\frac{13π}{12}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图程序是求10个数的平均数,则在横线上应填写的条件为(  )
A.i<1B.i>9C.i>10D.i<11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个正四面体木块如图所示,点P是棱VA的中点,过点P将木块锯开,使截面平行于棱VB和AC,若木块的棱长为a,则截面面积为$\frac{a2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校高二学生有800名,从中抽取100名学生期末考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100]
(Ⅰ)求图中α的值;
(Ⅱ)根据频率分布直方图,估计这100名学生语文成绩的平均分、中位数、众数;(精确到个位数)
(Ⅲ)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如表所示,求推测高二这800名学生中数学成绩在[50,90)之外的人数.
分数段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知一个正方体的表面积为24,则其外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若直线x+(a-1)y+2=0和2x+3y+1=0互相垂直,则a=(  )
A.$\frac{1}{3}$B.-$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.从空间一点出发的三条射线PA,PB,PC均成60°角,则二面角B-PA-C的大小为(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$arcsin\frac{1}{3}$D.$arccos\frac{1}{3}$

查看答案和解析>>

同步练习册答案