精英家教网 > 高中数学 > 题目详情

某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是,出现绿灯的概率都是.记这4盏灯中出现红灯的数量为X,当这排装饰灯闪烁一次时:
(1)求X=2时的概率;
(2)求X的数学期望.

(1)   (2)

解析解:(1)依题意知:X=2表示4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯,而每盏灯出现红灯的概率都是
故X=2时的概率P=C4222.
(2)法一 X的所有可能取值为0,1,2,3,4,依题意知
P(X=k)=C4kk4-k(k=0,1,2,3,4).
∴X的概率分布列为

X
0
1
2
3
4
P





∴数学期望E(X)=0×+1×+2×+3×+4×.
法二 ∵X服从二项分布,即X~B
∴E(X)=4×.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,从A1(1,0,0)、A2(2,0,0)、B1(0,1,0)、B2(0,2,0)、C1(0,0,1)、C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).

(1)求V=0的概率;
(2)求V的分布列及数学期望E(V).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.

(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“幸福”的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原
(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;
(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.

(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,
(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有名学生被考官L面试,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若一批白炽灯共有10000只,其光通量X服从正态分布,其正态分布密度函数是f(x)=,x∈(-∞,+∞),试求光通量在下列范围内的灯泡的个数.
(1)(203,215);(2)(191,227).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某计算机程序每运行一次都随机出现一个五位的二进制数A=,其中A的各位数中,a1=1,ak(k=2,3,4,5)出现0的概率为,出现1的概率为.记X=a1+a2+a3+a4+a5,当程序运行一次时,
(1)求X=3的概率;
(2)求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两人破译一密码,它们能破译的概率分别为,试求:
(1)两人都能破译的概率;
(2)两人都不能破译的概率;
(3)恰有一人能破译的概率;
(4)至多有一人能破译的概率;
(5)若要使破译的概率为99%,至少需要多少乙这样的人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.

(1)写出数量积X的所有可能取值;
(2)分别求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

同步练习册答案