精英家教网 > 高中数学 > 题目详情
6.已知对k∈R,直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,则实数m的取值范围是(  )
A.(1,2]B.[1,2)C.[1,2)∪(2,+∞)D.(2,+∞)

分析 直线方程与椭圆方程联立化为(m+2k2)x2+4kx+2-2m=0,由于直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,可得△≥0,解出即可得出.

解答 解:联立$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{2}+\frac{{y}^{2}}{m}=1}\end{array}\right.$,化为(m+2k2)x2+4kx+2-2m=0,
∵直线y-kx-1=0与椭圆$\frac{x^2}{2}+\frac{y^2}{m}=1$恒有公共点,
∴△=16k2-4(m+2k2)(2-2m)≥0,
化为m2+(2k2-1)m≥0,
由于m≠0,上式化为:m≥1-2k2
由于上式对k∈R恒成立,∴m≥1.
由椭圆的定义可知:m≠2.
综上可得m的取值范围是:[1,2)∪(2,+∞).
故选:C.

点评 本题考查了直线与椭圆的位置关系、一元二次方程的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(1)求圆心为点C(8,-3),且过点A(5,1)圆的标准方程;
(2)求经过点(1,-7)与圆x2+y2=25相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等腰三角形ABC中,A=90°,AB=3
(1)在三角形ABC中任取一点,离三个顶点距离都不小于1的概率.
(2)在BC边上任取一点M使BM>$\frac{\sqrt{2}}{2}$AB的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点A(1,1)在圆x2+y2-2x+1-m=0的外部,则m的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0且a≠1,设命题p:函数f(x)=2-|x|-a在x∈R内有两个零点,命题q:不等式|x-2|-|x+3|-4a2+12a-10<0对一切实数x∈R恒成立,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知底面边长为1,侧棱长为$\sqrt{2}$的正四棱柱的各顶点均在同一个球面上,则该球的表面积为(  )
A.$\frac{32π}{3}$B.$\frac{4π}{3}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知抛物线的顶点在原点,焦点在y轴正半轴上,抛物线上一点的横坐标为2,且该点到焦点的距离为2.
(1)求抛物线的标准方程;
(2)与圆x2+(y+2)2=4相切的直线l:y=kx+t交抛物线于不同的两点M、N,若抛物线上一点C满足$\overrightarrow{OC}$=λ($\overrightarrow{OM}$+$\overrightarrow{ON}$)(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow a=(\sqrt{3}sinx,\;m+cosx)$,$\overrightarrow b=(cosx,-m+cosx)$,且$f(x)=\vec a•\vec b$.
(1)求函数f(x)的解析式;并求其最小正周期和对称中心.
(2)当$x∈[{-\frac{π}{6},\frac{π}{3}}]$时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.椭圆中心在原点,焦点在x轴上,若存在过椭圆左焦点的直线L交椭圆于P、Q两点,使得OP⊥OQ,则椭圆离心率的取值范围为$[\frac{\sqrt{5}-1}{2},1)$.

查看答案和解析>>

同步练习册答案