精英家教网 > 高中数学 > 题目详情
设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使=0成立的点M的个数为________.
1个
设A1、A2、A3、A4、A5坐标分别为(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4)(x5,y5,z5),设M坐标为(x,y,z).
=0得方程
(x1-x)+(x2-x)+(x3-x)+(x4-x)+(x5-x)=0,
(y1-y)+(y2-y)+(y3-y)+(y4-y)+(y5-y)=0,
(z1-z)+(z2-z)+(z3-z)+(z4-z)+(z5-z)=0,
解得x=,y=,z=.
故有唯一的M满足等式.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,底面是边长为2的菱形,且,以为底面分别作相同的正三棱锥,且.

(1)求证:平面
(2)求平面与平面所成锐角二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥,底面是等腰梯形,
中点,平面
中点.

(1)证明:平面平面
(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜三棱柱中,O是AC的中点,平面.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.
(1)求二面角D1-AE-C的大小;
(2)求证:直线BF∥平面AD1E.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4).设ab.
(1)求ab的夹角θ;
(2)若向量kab与ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间直角坐标系中,点与点的距离为               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案