精英家教网 > 高中数学 > 题目详情
1.向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=|\overrightarrow b|=\overrightarrow a•\overrightarrow b=2$,向量$\overrightarrow c$满足$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)≤0$,则|$\overrightarrow c$|的最小值为$\sqrt{3}-1$.

分析 由已知求出两向量$\overrightarrow{a},\overrightarrow{b}$的夹角,进一步设出$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,$\sqrt{3}$),$\overrightarrow{c}$=(x,y),结合$(\overrightarrow a-\overrightarrow c)•(\overrightarrow b-\overrightarrow c)≤0$,可得(x,y)表示以($\frac{3}{2},\frac{\sqrt{3}}{2}$)为圆心,以1为半径的圆及圆内部.画出图形,数形结合得答案.

解答 解:设$<\overrightarrow{a},\overrightarrow{b}>=θ$,则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}=\frac{1}{2}$,
∴θ=60°,
∴由题意可设$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,$\sqrt{3}$),$\overrightarrow{c}$=(x,y),
则:$\overrightarrow{a}-\overrightarrow{c}$=(2-x,-y),$\overrightarrow{b}-\overrightarrow{c}$=(1-x,$\sqrt{3}$-y).
∴$(\overrightarrow{a}-\overrightarrow{c})•(\overrightarrow{b}-\overrightarrow{c})$=${x}^{2}-3x+2+{y}^{2}-\sqrt{3}y$≤0.
即$(x-\frac{3}{2})^{2}+(y-\frac{\sqrt{3}}{2})^{2}≤1$.
∴(x,y)表示以($\frac{3}{2},\frac{\sqrt{3}}{2}$)为圆心,以1为半径的圆及圆内部.
|$\overrightarrow{c}$|=$\sqrt{{x}^{2}+{y}^{2}}$表示点(x,y)到原点的距离,如图所示:
连接圆心和原点O,与圆的交点到原点的距离最小.
∴|$\overrightarrow{c}$|的最小值为$\sqrt{3}$-1.
故答案为:$\sqrt{3}-1$.

点评 本题考查平面向量的数量积运算,训练了利用向量坐标解决向量问题的方法,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=cos($\frac{π}{3}$+x)•cos($\frac{π}{3}$-x),g(x)=$\frac{1}{2}$sin2x-$\frac{1}{4}$.
(1)化简f(x);
(2)求函数f(x)的最小正周期;
(3)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等比数{an}的前n项和Sn,a1=1,S6=9S3
(Ⅰ){an}的通项公式;
(Ⅱ)若数{bn}满足a1b1+a2b2+…+anbn=(n-1)×2n+1,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上存在一点 P满足$∠{A}{P}F=\frac{π}{2}$,F为椭圆的左焦点,A为椭圆的右顶点,则椭圆的离心率的范围是(  )
A.$({0,\frac{1}{2}})$B.$({0,\frac{{\sqrt{2}}}{2}})$C.$({\frac{1}{2},1})$D.$({\frac{{\sqrt{2}}}{2},1})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\sqrt{3x-1}$+lg(1-x)的定义域为(  )
A.(0,$\frac{1}{3}$)B.[0,1)C.[$\frac{1}{3}$,1)D.[1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1-2|x-$\frac{1}{2}$|,则函数g(x)=f[f(x)]-$\frac{4}{3}$x在区间[-2,2]内不同的零点个数是(  )
A.5B.6C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=1+3x-x3的极大值是3,极小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC中,角A,B,C所对的边长分别为a,b,c,$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,则△ABC的面积为(  )
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,求证:平面SBD⊥平面SAC;

查看答案和解析>>

同步练习册答案