精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线C关于轴对称,顶点为坐标原点,且经过点

1)求抛物线C的标准方程;

2 过点的直线交抛物线于MN两点.是否存在定直线,使得l上任意点P与点MQN所成直线的斜率成等差数列.若存在,求出直线l的方程;若不存在,说明理由.

【答案】1;(2)存在定直线,.

【解析】

1)设抛物线为,代入点的坐标可得;

(2))假设存在直线使得直线上的任意点成等差数列,设MN交抛物线于,代入抛物线方程应用韦达定理得,计算,并计算,代入并化简,由为恒成立的,可求得

1)由条件设抛物线为,而点在抛物线上,

从而有,故抛物线方程为

2)假设存在直线使得直线上的任意点成等差数列,

由条件知直线MN的斜率不等于0

MN交抛物线于

可得:

从而有

成等差数列,则

化简有

从而有,即

故存在定直线

使得l上任意点P与点MQN所成直线斜率成等差数列

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是直线)上一动点, 是圆的两条切线, 为切点, 为圆心,若四边形面积的最小值是,则的值是( )

A. B. C. D.

【答案】D

【解析】∵圆的方程为:

∴圆心C(0,1),半径r=1.

根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小。切线长为4,

∴圆心到直线l的距离为.

∵直线

,解得

所求直线的斜率为

故选D.

型】单选题
束】
19

【题目】抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点 ,垂足为,则的面积是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,右焦点,过点的直线交椭圆两点.

(1)求椭圆的方程;

(2)若点关于轴的对称点为 ,求证: 三点共线;

(3) 当面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五中全会首次提出了绿色发展理念,将绿色发展作为十三五乃至更长时期经济社会发展的一个重要理念.某地区践行绿水青山就是金山银山的绿色发展理念,2015年初至2019年初,该地区绿化面积y(单位:平方公里)的数据如下表:

年份

2015

2016

2017

2018

2019

年份代号x

1

2

3

4

5

绿化面积y

2.8

3.5

4.3

4.7

5.2

1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

2)利用(1)中的回归方程,预测该地区2025年初的绿化面积.

(参考公式:线性回归方程:为数据平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为(  )

A. 300,B. 300,C. 60,D. 60,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示:

(Ⅰ)利用散点图判断,(其中为大于的常数)哪一个更适合作为年研发费用和年销售量的回归方程类型(只要给出判断即可,不必说明理由);

(Ⅱ)对数据作出如下处理:令,得到相关统计量的值如下表:

根据(Ⅰ)的判断结果及表中数据,求关于的回归方程;

(Ⅲ)已知企业年利润(单位:千万元)与的关系为(其中),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P是抛物线y2=4x上的一个动点,F为抛物线的焦点,记点P到点A(-1,1)的距离与点P到直线x= - 1的距离之和的最小值为M,若B(3,2),记|PB|+|PF|的最小值为N,则M+N= ______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1为某省2018年1~4月快递业务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误的是( )

A. 2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件

B. 2018年1~4月的业务量同比增长率均超过50%,在3月底最高

C. 从两图来看,2018年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致

D. 从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的最大值和最小值;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案