精英家教网 > 高中数学 > 题目详情
函数f(x)是(0,+∞)上的单调递增函数,当n∈N*时,f(n)∈N*,且f[f(n)]=3n,则f(1)的值等于(  )
分析:先确定f(1)≥2,进而可确定f(2)≤f(f(1))=3,f(3)≥f(f(2))=6,f(6)≤f(f(3))=9,从而可得结论.
解答:解:∵f(f(n))=3n,
∴f(f(1))=3,且f(1)≠1 (若f(1)=1,则f(f(1))=f(1)=3,与f(1)=1矛盾)
∵f(x)∈N*
∴f(1)≥2
∵f(x)在(0,+∞)上是单调增函数,f[f(n)]=3n 
∴f(2)≤f(f(1)),∵f(f(1))=3,∴f(2)≤3
∴f(3)≥f(f(2)),∵f(f(2))=6,∴f(3)≥6
∴f(6)≤f(f(3)),∵f(f(3))=9,∴f(6)≤9
∵当n∈N*时,f(n)∈N*,即f(1),f(2),f(3),f(4),f(5),f(6)均为整数,
且f(x)为定义域内的增函数,
∴f(1)<f(2)<f(3)<f(4)<f(5)<f(6)
∴f(1)=2,f(2)=3,f(3)=6,f(4)=7,f(5)=8,f(6)=9
故选B.
点评:本题考查函数的单调性,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)满足f(x+1)=f(x-1),给出以下命题:①函数f(x)是周期为2的周期函数;②函数f(x)的图象关于直线x=1对称;③函数f(x)的图象关于点(k,0)(k∈Z)对称;④若函数f(x)是(0,1)上的增函数,则f(x)是(3,5)上的增函数,其中正确命题的番号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4x-1.
(Ⅰ)若a=2时,求当x∈[0,3]时,函数f(x)的值域;
(Ⅱ)若a=2,当x∈(0,1)时,f(1-m)-f(2m-1)<0恒成立,求m的取值范围;
(Ⅲ)若a为非负数,且函数f(x)是区间[0,3]上的单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|4x-x2|(x∈R),对于任意的正实数t∈(0,b],定义:函数f(x)在[0,t]上的最小值为N(t),函数f(x)在[0,t]上的最大值为M(t),现若存在最小正整数m,使得M(t)-N(t)≤m•t对任意的正实数t∈(0,b]成立,则称函数f(x)为区间(0,b]的“m阶收缩函数”
(1)当t∈(0,1]时,试写出N(t),M(t)的表达式,并判断函数f(x)是否为(0,1]上的“m阶收缩函数”,如果是,请写出对应的m的值;(只写出相应结论,不要求证明过程)
(2)若函数f(x)是(0,b]上的4阶收缩函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是(0,+∞)上可导函数,且xf′(x)>f(x)在x>0时恒成立,又g(x)=ln(1+x)-x(x>-1)
①求g(x)的最值
②求证x1>0,x2>0时f(x1+x2)>f(x1)+f(x2)并猜想一个一般结论,加以证明
③求证
1
22
ln22+
1
32
ln32+…+
1
(n+1)2
ln(n+1)2
n
2(n+1)(n+2)
(n∈N*)

查看答案和解析>>

同步练习册答案