精英家教网 > 高中数学 > 题目详情

设椭圆数学公式的左、右焦点分别为F1、F2,左准线为l,若在椭圆上存在点P,使得当PQ⊥l于点Q时,四边形PQF1F2为平行四边形,则此椭圆的离心率e的取值范围是________.

,1)
分析:PQF1F2为平行四边形对边相等.推出PQ=F1F2=2C.设P(x1,y1). P在X负半轴,利用P的横坐标的范围,得到关系式,即可得到椭圆离心率的范围.
解答:因为PQF1F2为平行四边形,对边相等.所以,PQ=F1F2,所以PQ=2C.
设P(x1,y1). P在X负半轴,
-x1=-2c<a,
所以2c2+ac-a2>0,
即2e2+e-1>0,
解得e
因为椭圆e取值范围是(0,1),
所以此题答案为(,1).
故答案为:(,1).
点评:本题是中档题,考查椭圆的基本性质,找出P的横坐标与椭圆长半轴的关系是解题的关键,考查计算能力,转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在坐标原点、焦点在x轴上椭圆的离心率e=
3
3
,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年四川卷理)设椭圆的左、右焦点分别是,离心率,右准线上的两动点,且

(Ⅰ)若,求的值;

(Ⅱ)当最小时,求证共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分) 已知椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线且与x轴垂直,动直线轴垂直,于点P,求线段PF1的垂直平分线与的交点M的轨迹方程,并指明曲线类型。

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

设椭圆的左、右焦点分别是F1、F2,离心率,右准线l上的两动点M、N,且
(Ⅰ)若,求a、b的值;
(Ⅱ)当最小时,求证共线。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省黄山市休宁中学高三(上)数学综合练习试卷1(文科)(解析版) 题型:解答题

已知中心在坐标原点、焦点在x轴上椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+2相切.
(1)求该椭圆的标准方程;
(2)设椭圆的左,右焦点分别是F1和F2,直线l1过F2且与x轴垂直,动直线l2与y轴垂直,l2交l1于点P,求线段PF1的垂直平分线与l2的交点M的轨迹方程,并指明曲线类型.

查看答案和解析>>

同步练习册答案