精英家教网 > 高中数学 > 题目详情
在△ABC中,A=60°,b=1,△ABC面积为,则的值为( )
A.
B.
C.
D.
【答案】分析:利用三角形面积公式求得c,进而利用余弦定理求得a,进而根据正弦定理求得===2R,进而推断出=答案可得.
解答:解:∵S△ABC=bcsinA=×1×c×=
∴c=4
根据余弦定理有:a2=b2+c2-2bccosA=1+16-2×1×4×=13
所以,a=
根据正弦定理==,则:
==
故选B
点评:本题主要考查了正弦定理和余弦定理的应用.要求考生能利用正弦定理和余弦定理对解三角形问题中边,角问题进行互化或相联系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B、C不重合),且丨
AB
|2=|
AD
|2+
BD
DC
,则∠B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=6,b=4,C=30°,则△ABC的面积是(  )
A、12
B、6
C、12
3
D、8
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
∠C=
π
2
|AC|=
3
,M是AB的中点,那么(
CA
-
CB
)•
CM
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A=
π
6
,D是BC边上任意一点(D与B,C不重合)且|
AB
|2=|
AD
|2+
BD
DC
,则∠B
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=
6
,b=2,c=
3
+1,求A、B、C及S△ABC

查看答案和解析>>

同步练习册答案