【题目】如图所示是函数在区间上的图象,为了得到这个函数的图像,只要将的图象上所有的点 ( )
A. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
B. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C. 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
D. 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变
科目:高中数学 来源: 题型:
【题目】下列几个命题
①方程有一个正实根,一个负实根,则;
②函数是偶函数,但不是奇函数;
③命题“若,则”的否命题为“若,则”;
④命题“,使得”的否定是“,都有”;
⑤“”是“”的充分不必要条件.
正确的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d≠0,且a3 , a5 , a15成等比数列,若a1=3,Sn为数列an的前n项和,则anSn的最小值为( )
A.0
B.﹣3
C.﹣20
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在底面是菱形的四棱锥P﹣ABCD中,PA⊥底面ABCD,∠BAD=120°,点E为棱PB的中点,点F在棱AD上,平面CEF与PA交于点K,且PA=AB=3,AF=2,则点K到平面PBD的距离为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年6月22日“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在15—75岁之间的100人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为: .把年龄落在区间自和 内的人分别称为“青少年”和“中老年”.
关注 | 不关注 | 合计 | |
青少年 | 15 | ||
中老年 | |||
合计 | 50 | 50 | 100 |
(1)根据频率分布直方图求样本的中位数(保留两位小数)和众数;
(2)根据已知条件完成下面的列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;
临界值表:
附:参考公式
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用部分自然数构造如图的数表:用表示第行第个数,使得,每行中的其他各数分别等于其“肩膀”上的两个数之和,设第行中的各数之和为.
已知,求的值;
令,证明:是等比数列,并求出的通项公式;
数列中是否存在不同的三项恰好成等差数列?若存在,求出的关系,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为 ( )的离心率为 ,圆的方程为 ,若椭圆与圆 相交于 , 两点,且线段 恰好为圆 的直径.
(1)求直线 的方程;
(2)求椭圆 的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com