精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中, 侧面底面.

(1)求证: 平面

(2)若,求二面角的余弦值.

【答案】(1)证明见解析;(2).

【解析】试题分析: (1)由四边形为菱形,得对角线,由侧面底面,得侧面B1,从而1,由此能证明平面
(2)由勾股定理得,由菱形,得为正三角形,以菱形的对角线交点为坐标原点方向为轴, 方向为轴,过且与平行的方向为轴建立如图空间直角坐标系,分别求出平面的法向量和平面的法向量,由此能求出二面角的余弦值.

试题解析:(1)证明:在侧面中,

,

四边形为菱形,

对角线.

侧面底面

侧面

.

,

平面.

(2)在中, ,

又菱形中,

为正三角形.

如图,以菱形的对角线交点为坐标原点方向为轴, 方向为轴,过且与平行的方向为轴建立如图空间直角坐标系,

,

为平面的方向量,则

,得为平面的一个法向量.

为平面的一个法向量,

.

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为

(Ⅰ)求的解析式;

(Ⅱ)当,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的等边三角形,四边形为正方形,平面平面.点分别为上的点,且,点上的一点,且.

(Ⅰ)当时,求证: 平面

(Ⅱ)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下四种变换方式:

向左平移个单位长度,再将每个点的横坐标缩短为原来的;

向右平移个单位长度,再将每个点的横坐标缩短为原来的;

每个点的横坐标缩短为原来的,向右平移个单位长度;

每个点的横坐标缩短为原来的,向左平移个单位长度;

其中能将的图像变换成函数的图像的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为自然对数的底, )的导函数为.

(1)当时,讨论函数在区间上零点的个数;

(2)设点 是函数图象上两点,若对任意的,割线的斜率都大于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,四边形为平行四边形, 的中点.

(1)求证: 平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】12分)已知等差数列{an}中,a1=1a3=﹣3

)求数列{an}的通项公式;

)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设函数,讨论函数的单调性;

(2)当 时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求平面与平面所成二面角的大小;

2)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

同步练习册答案