精英家教网 > 高中数学 > 题目详情
计算:
cos20°sin50°cos70°
cos10°
=
 
考点:三角函数的化简求值
专题:三角函数的求值
分析:直接利用二倍角公式以及诱导公式化简求值即可.
解答: 解:
cos20°sin50°cos70°
cos10°

=
cos20°sin50°sin20°
cos10°

=
sin50°sin40°
2cos10°

=
cos40°sin40°
2cos10°

=
sin80°
4cos10°

=
1
4

故答案为:
1
4
点评:本题考查二倍角公式以及诱导公式的应用,三角函数的化简求值,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若有穷数列a1,a2,…,an(n≥3)满足:(1)
n
i=1
ai
=0;(2)
n
i=1
|ai|
=1.则称该数列为“n阶非凡数列”
(Ⅰ)分别写出一个单调递增的“3阶非凡数列”和一个单调递减的“4阶非凡数列”;
(Ⅱ)设k∈N*,若“2k+1阶非凡数列”是等差数列,求其通项公式;
(Ⅲ)记“n阶非凡数列”的前m项的和为Sm(m=1,2,3,…,n),求证:
(1)|Sm|≤
1
2

(2)|
n
i=1
ai
i
|≤
1
2
-
1
2n

查看答案和解析>>

科目:高中数学 来源: 题型:

在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人.

(1)求该考场考生中“阅读与表达”科目中成绩等级为A的人数;
(2)已知参加本考场测试的考生中,恰有2人的两科成绩等级均为A.在至少一科成绩等级为A的考生中,随机抽取2人进行访谈,求这2人的两科成绩等级均为A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一扇形的周长为20厘米.
(1)圆心角为
3
2
时,求扇形的面积;
(2)圆心角α多大时,扇形面积最大?其中0<α<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,x2+1<2x;命题q:不等式x2-2x-1>0恒成立.那么(  )
A、“-p”是假命题
B、q是真命题
C、“p或q”是假命题
D、“p且q”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

设两个向量
a
=(n+2,n-cos2x),
b
=(m,
m
2
+sinx),其中m,n为实数,若存在实数x使得
a
=2
b
,则m的取值范围为(  )
A、[1,4]
B、[0,4]
C、[0,2]
D、[-6,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6位对户外运动持“喜欢”态度,有1位对户外运动持“不喜欢“态度和3位持“一般”态度;那么这个公司全体员工中对户外运动持“喜欢”态度的有(  )
A、36B、30C、24D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1所示,在△ABC中,∠B=90°,D,E分别是AB,AC的中点,将△ADE沿DE折到△PDE的位置,使得∠PDB=60°,如图2所示,连接PB,PC,CD,O,F分别是BD,PB的中点,连接PO,DF,PC.
(1)求证:PO⊥平面BCED;
(2)求证:DF∥平面PCE;
(3)若DB=2,BC=
2
,求二面角F-CD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若非零实数a,b,c成等差数列,则函数y=ax2+bx+
1
4
c的图象与x轴交点的个数为(  )
A、0B、1C、2D、1或2

查看答案和解析>>

同步练习册答案