精英家教网 > 高中数学 > 题目详情
1.求下列函数的值域:
(1)-x2-4x+3;
(2)y=$\frac{1}{2+x+{x}^{2}}$;
(3)y=x-$\sqrt{x+2}$.

分析 (1)直接利用配方法求二次函数的值域;
(2)利用配方法求出x2+x+2的范围,取倒数得答案;
(3)令$\sqrt{x+2}=t$(t≥0)换元,然后转化为二次函数求值域.

解答 解:(1)∵y=-x2-4x+3=-(x+2)2+7≤7,
∴函数y=-x2-4x+3的值域为(-∞,7];
(2)∵${x}^{2}+x+2=(x+\frac{1}{2})^{2}+\frac{7}{4}≥\frac{7}{4}$,
∴y=$\frac{1}{2+x+{x}^{2}}$∈(0,$\frac{4}{7}$];
(3)令$\sqrt{x+2}=t$(t≥0),∴x=t2-2,
∴y=x-$\sqrt{x+2}$化为g(t)=t2-t-2(t≥0),
其对称轴方程为t=$\frac{1}{2}$,∴$g(t)_{min}=g(\frac{1}{2})=-\frac{9}{4}$,
∴y=x-$\sqrt{x+2}$的值域为[$-\frac{9}{4},+$∞).

点评 本题考查函数的值域及其求法,训练了配方法及换元法求函数的值域,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知偶函数f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间[0,2]上是递增的,则f(-6.5),f(-1),f(0)的大小关系是(  )
A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{bn}中,b1=0,bn+1=-$\frac{1}{3}$bn+$\frac{1}{3}$,n∈R.
(1)求数列{bn}的通项公式;
(2)令an=3nbn,求$\frac{{a}_{n}}{{a}_{n+1}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若不等式a2-2a-1≤$\frac{|x{|}^{2}+1}{|x|}$对一切非零实数x恒成立,则实数a的取值范围是(  )
A.[-3,1]B.[-1,3]C.[-1,2]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若a>0,且a≠1,设函数f(x)=$\left\{\begin{array}{l}{{a}^{|x|},x<1}\\{|{x}^{2}-2x|,x≥1}\end{array}\right.$,若不等式f(x)≤3的解集是(-∞,3],则a的取值范围是(  )
A.(1,+∞)B.(1,3)C.(0,1)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}中a1=$\frac{1}{2}$,an=$\frac{n-1}{n+1}$an-1(n≥2),求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,ABCD-A1B1C1D1是棱长为a的正方体.求证:
(1)D${\;}_{{1}_{\;}}$B⊥AC;
(2)BC1⊥平面A1B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=f(x)的定义域为R,且不恒为0,且对任意x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求f(0)的值;
(2)判断函数y=f(x)的奇偶性;
(3)当x>0时,f(x)<0,判断函数y=f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x∈R|log2(x-1)<2},B={x∈R||3x-b|<4}.
(Ⅰ)若A∪B=A,求实数b的取值范围;
(Ⅱ)若集合B∩N*={1,2,3},求实数b的取值范围.

查看答案和解析>>

同步练习册答案