精英家教网 > 高中数学 > 题目详情
17.设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则A∩(CRB)=(  )
A.{-1,2}B.{-2,-1,1,2,4}C.{1,4}D.

分析 先求出集合B,从而求出CRB,进而求出A∩(CRB)即可.

解答 解:A={n|n=3k-1,k∈Z}={…,-4,-1,2,5,…},
B={x||x-1|>3}={x|x>4或x<-2,
∴CRB={x|-2≤x≤4},
∴A∩(CRB)={-1,2},
故选:A.

点评 本题考查了集合的交、并、补的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若点A(2,-4),点B(-2,-5),则向量$\overrightarrow{AB}$的坐标为(  )
A.(-4,-1)B.(4,1)C.(0,-9)D.(-2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}$,且$\overrightarrow{AC}=\overrightarrow a$,$\overrightarrow{BD}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\frac{1}{2}(\overrightarrow a-\overrightarrow b)$B.$\frac{1}{2}(\overrightarrow a+\overrightarrow b)$C.$\frac{1}{2}(\overrightarrow b-\overrightarrow a)$D.$\frac{1}{2}\overrightarrow a-\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知一次函数f(x)满足f[f(x)]=4x+3,求f(x);
(2)已知函数f(x)满足3f(x)+2f(-x)=2x+5,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.写出命题:“若x2-3x+2≠0,则x≠1且x≠2”的逆否命题“若x=1或x=2,则x2-3x+2=0”..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x+$\frac{a}{x}$(a>0)在(0,3]上单调递减,则实数a的取值范围是[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法中
①命题“每个指数函数都是单调函数”是全称命题,而且是真命题;
②若m?α,n?α,m,n是异面直线,那么n与α相交;
③设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=2a(a>0),则动点P的轨迹是椭圆;
④若实数k满足0<k<9,则曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1与曲线$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1有相同的焦点.
其中正确的为①④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(满分100分,均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图.根据图形的信息,回答下列问题:
(1)求第四小组的频率,补全这个频率分布直方图;并估计该校学生的数学成绩的中位数.(精确到0.1);
(2)按分层抽样的方法在数学成绩是[60,70),[70,80)的两组学生中选6人,再在这6人种任取两人,求他们的分数在同一组的概率;
(3)若从全市参加高一年级期末考试的学生中,任意抽取3个学生,设这3个学生中数学成绩为80分以上(包括80分)的人数为X,(以该校学生的成绩的频率估计概率),求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=ax2+bx(a≠0),并且满足f(1+x)=f(1-x),且方程f(x)-x=0有且只有一个根.
(1)求f(x)的解析式;
(2)若对任意的x∈[-2,2],不等式f(x)≤m-$\frac{3}{2}$x2恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案