精英家教网 > 高中数学 > 题目详情

【题目】直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1l2l1l2时,分别求实数m的值.

【答案】l1l2时,m的值为3;当l1l2时,m的值为-.

【解析】试题分析l1l2时,由于两条直线的斜率都存在,故要求斜率相等即可;当两直线垂直时,由于直线l2的斜率k2存在且不为0,故只要求k1·k2=-1;分别解出方程即可;

l1l2时,由于直线l2的斜率k2存在,则直线l1的斜率k1也存在,

则k1=k2,即=,解得m=3;

l1l2时,由于直线l2的斜率k2存在且不为0,则直线l1的斜率k1也存在,则k1·k2=-1,

·=-1,解得m=-.

综上所述,当l1l2时,m的值为3;当l1l2时,m的值为-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某圆拱桥的示意图如图所示该圆拱的跨度AB36 m拱高OP6 m在建造时每隔3 m需用一个支柱支撑求支柱A2P2的长(精确到0.01 m)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的三个顶点分别为A(0,4)、B(-2,6)、C(-8,0).

(1)分别求边ACAB所在直线的方程;

(2)求AC边上的中线BD所在直线的方程;

(3)求AC边的中垂线所在直线的方程;

(4)求AC边上的高所在直线的方程;

(5)求经过两边ABAC的中点的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的参数方程为 (θ为参数),若P是圆C与x轴的交点,以原点O为极点,x轴的正半轴为极轴建立极坐标系,设过点P的圆C的切线为l (Ⅰ)求直线l的极坐标方程
(Ⅱ)求圆C上到直线ρ(cosθ+ sinθ)+6=0的距离最大的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2 , |AB|=4,|F1F2|=2 ,直线y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若m>0,设直线AD、BC的斜率分别为k1、k2 , 求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC=60°PA=AB=BC

EPC的中点.求证:

CD⊥AE

PD⊥平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,ω>0,|φ|<)的一个零点与之相邻的对称轴之间的距离为,且fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

同步练习册答案