精英家教网 > 高中数学 > 题目详情
已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=
2S
a+b+c
.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?______.

精英家教网
设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为 V四面体A-BCD=
1
3
(S1+S2+S3+S4

猜想:四面体ABCD的各表面面积分别为S1,S2,S3,S4,其体积为V,
则四面体ABCD的内切球半径r=
3V
S1+S2+S3+S4

故答案为:r=
3V
S1+S2+S3+S4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=
2Sa+b+c
.这是一道平面几何题,请用类比推理方法,猜测对空间四面体ABCD存在什么类似结论?
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长a,b,c满足b+2c≤3a,c+2a≤3b,则
ba
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为a、b、c,满足直线ax+by+c=0与圆x2+y2=1相离,则△ABC是(  )
A、锐角三角形B、直角三角形C、钝角三角形D、以上情况都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长为三个连续的正整数,且最大角为钝角,则最长边长为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长AC=3,BC=4,AB=5,P为AB边上任意一点,则
CP
•(
BA
-
BC
)
的最大值为
 

查看答案和解析>>

同步练习册答案