精英家教网 > 高中数学 > 题目详情

如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.

当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.

解析试题分析:先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等式适用的三个条件.
试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米,
                             6分

                       8分
因为,所以
当且仅当,即时取等号                       12分
此时取得最大值,最大值为.
答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.
14分
考点:矩形的面积、基本不等式

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:(为常数),若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及的表达式;
(2)隔热层修建多厚时,总费用达到最小?并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

老峰镇计划建造一个室内面积为800的矩形蔬菜温室。在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3 宽的空地。当矩形温室的边长各为多少时?蔬菜的种植面积最大。最大种植面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x>0,y>0,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知都是正数,
(1)若,求的最大值
(2)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a,b,c是全不相等的正实数,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)选修4    - 5 :不等式选讲
设函数,.
(I)求证
(II)若成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知O为坐标原点,点A(1,0),若点M(x,y)为平面区域内的一个动点,则的最小值为(    ).

A.9 B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知x>1,求3x++1的最小值                         

查看答案和解析>>

同步练习册答案