精英家教网 > 高中数学 > 题目详情
13.已知$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin2β的值.

分析 由条件利用同角三角函数的基本关系求得sin(α-β)和cos(α+β)的值,再利用两角和的正弦公式求得sin2β的值.

解答 解:∵$\frac{π}{2}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,
∴0<α-β<$\frac{π}{2}$,π<α+β<$\frac{3π}{2}$,
∴sin(α-β)=$\sqrt{{1-cos}^{2}(α-β)}$=$\frac{5}{13}$,cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{4}{5}$,
∴sin2β=sin[(α+β)-(α-β)]=sin(α+β)cos(α-β)-cos(α+β)sin(α-β)
=-$\frac{3}{5}$×$\frac{12}{13}$-(-$\frac{4}{5}$)×$\frac{5}{13}$=-$\frac{16}{65}$.

点评 本题主要考查同角三角函数的基本关系、两角和的正弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在区间[0,1]上随机地取两个数x,y组成点P(x,y),求满足x2+y2≤1的事件概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2+2x=15,M是圆C上的动点,N(1,0),MN的垂直平分线交CM于点P,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,某机械转动的三个齿轮啮合传动.若A轮的直径为180mm,B、C两轮的直径都是120mm,且∠ABC=70°,求A、C两齿轮的中心距离(精确到1mm).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知sinα+cosα=$\frac{1}{4}$,则sin2α=-$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P在曲线y=x2+1上,若曲线y=x2+1在点P处的切线与曲线y=-2x2-1相切,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.过点(0,2)的直线L与双曲线x2-y2=2相交于不同两点E,F.若△OEF的面积不小于2$\sqrt{2}$.求直线L的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆$\frac{{x}^{2}}{4}$+y2=1的弦AB的中点为P(1,$\frac{1}{2}$),则弦AB所在直线的方程及其弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;
③设随机变量 X~N(1,σ2),若P(0<X<1)=0.35,则P(0<X<2)=0.7;
④两个随机变量的线性相关性越强,则相关系数就越接近于1.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案