【题目】如图,在三棱柱中,平面,,,,分别是,的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面平面;
(Ⅲ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)
【解析】
(Ⅰ)取的中点,连接,,证明四边形为平行四边形后即可得,再根据线面平行的判定即可得证;
(Ⅱ)由等腰三角形的性质和线面垂直的性质可得、,则可证平面,再根据面面垂直的判定即可得证;
(Ⅲ)建立空间直角坐标系后,表示出各点坐标,求出平面的一个法向量为,,利用即可得解.
(Ⅰ)证明:取的中点,连接,,
因为是的中点,
所以,且,
在三棱柱中,
因为是的中点,所以,且,
所以且,
所以四边形为平行四边形,所以.
又平面,平面,
所以平面.
(Ⅱ)证明:因为,且是的中点,所以,
因为平面,平面,
所以,
又 ,,平面,所以平面,
又,所以平面.
又平面,
所以平面平面.
(Ⅲ)如图建立空间直角坐标系,
则,,,,
,,,
设平面的一个法向量为,
则即,
令,则.
设直线与平面所成角为,
则.
即直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-lnx,g(x)=x2-ax.
(1)求函数f(x)在区间[t,t+1](t>0)上的最小值m(t);
(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函数h(x)图像上任意两点,且满足>1,求实数a的取值范围;
(3)若x∈(0,1],使f(x)≥成立,求实数a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:
分组 | 频数(单位:名) |
使用“余额宝” | |
使用“财富通” | |
使用“京东小金库” | 30 |
使用其他理财产品 | 50 |
合计 | 1200 |
已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.
(1)求频数分布表中,的值;
(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,,且平面平面.
(1)确定的位置(需要说明理由),并证明:平面平面.
(2)与侧面平行的平面与棱,,分别交于,,,求四面体的体积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学家刘徽在《九章算术注》中记述:羡除,隧道也,其所穿地,上平下邪.如图所示的五面体是一个羡除,两个梯形侧面与相互垂直,.若,,,梯形与的高分别为3和1,则该羡除的体积( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点为,,离心率为,点P为椭圆C上一动点,且的面积最大值为,O为坐标原点.
(1)求椭圆C的方程;
(2)设点,为椭圆C上的两个动点,当为多少时,点O到直线MN的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com