精英家教网 > 高中数学 > 题目详情

已知四棱锥P-ABCD的三视图如下.
(1)求四棱锥P-ABCD的体积;
(2)若E是侧棱PC的中点,求证:PA∥平面BDE;
(3)若E是侧棱PC上的动点,不论点E在何位置,是否都有BD⊥AE?证明你的结论.

解:(1)由该四棱锥的三视图可知,该四棱锥P-ABCD的底面是边长为1的正方形,
侧棱PC⊥底面ABCD,且PC=2,
∴VP-ABCD=SABCD•PC==
(2)证明:连接AC交BD于F,则F为AC的中点,
∵E为PC的中点,
∴PA∥EF,
又PA?平面BDE内,
∴PA∥平面BDE
(3)不论点E在何位置,都有BD⊥AE
证明:连接AC,∵ABCD是正方形,
∴BD⊥AC
∵PC⊥底面ABCD且BD?平面ABCD,
∴BD⊥PC
又AC∩PC=C,
∴BD⊥平面PAC,
∵不论点E在何位置,都有AE?平面PAC
∴不论点E在何位置,都有BD⊥AE
分析:(1)更加所给的三视图得到该四棱锥P-ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2,根据四棱锥的体积公式做出几何体的体积.
(2)根据见到中点找中点的方法,连接AC交BD于F,则F为AC的中点,根据三角形的中位线与底边平行,得到线与面的平行关系,再写出不属于这个平面,得到线与面平行.
(3)先写出结论,再证明这个结论,要证不论点E在何位置,都有BD⊥AE,只要证明BD⊥平面PAC,且不论点E在何位置,都有AE?平面PAC,得到结论.
点评:本题是一个典型的立体几何的题目,从三视图开始,考查的知识点比较全面,注意最后一问的解答格式,需要先得到结论,再证明结论,两个环节不能缺少.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,侧面PBC⊥底面ABCD,O是BC的中点.
(1)求证:PO⊥平面ABCD;
(2)求证:PA⊥BD
(3)若二面角D-PA-O的余弦值为
10
5
,求PB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E为BC中点,AE与BD交于O点,AB=BC=2CD=2,BD⊥PE.
(1)求证:平面PAE⊥平面ABCD; 
(2)若直线PA与平面ABCD所成角的正切值为
5
2
,PO=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是线段PC上一点,PC⊥平面BDE.
(Ⅰ)求证:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直线AC与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知四棱锥P--ABC的底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,e为PC的中点,F为AD的中点.
(Ⅰ)证明EF∥平面PAB;
(Ⅱ)证明EF⊥平面PBC;
(III)点M是四边形ABCD内的一动点,PM与平面ABCD所成的角始终为45°,求动直线PM所形成的曲面与平面ABCD、平面PAB、平面PAD所围成几何体的体积.

查看答案和解析>>

同步练习册答案