精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,侧面底面ABCD,侧棱,底面ABCD为直角梯形,其中OAD中点.

1)求异面直线PBCD所成角的余弦值;

2)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.

【答案】1;(2)存在,且.

【解析】

(1)由已知可证,异面直线所成的角找到,在三角形中求解即可;

(2)用体积法求得到平面的距离,然后再根据体积比求解.

1)∵,连接

所以四边形是平行四边形,

所以异面直线PBCD所成角是或其补角.

中点,则,又平面平面ABCD且平面平面ABCD平面

中,由,得

∴异面直线PBCD所成角的余弦值为

2)连接,由(1是正方形,是正三角形,

到平面的距离为

,即

线段AD上存在点Q,使得它到平面PCD的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是正方体的平面展开图,在这个正方体中;

1BMED平行;(2CNBE是异面直线;(3CNBM所成角为60°;(4CNAF垂直. 以上四个命题中,正确命题的序号是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若直角三角形两直角边长之和为12,求其周长的最小值;

(2)若三角形有一个内角为,周长为定值,求面积的最大值;

(3)为了研究边长满足的三角形其面积是否存在最大值,现有解法如下:(其中, 三角形面积的海伦公式),

,则

但是,其中等号成立的条件是,于是矛盾,

所以,此三角形的面积不存在最大值.

以上解答是否正确?若不正确,请你给出正确的答案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面,,分别为线段的中点,点是线段的中点.求证:

1平面

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的为( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB= ,AD=2,E,F为线段AB的三等分点,GH为线段DC的三等分点.将长方形ABCD卷成以AD为母线的圆柱W的半个侧面,ABCD分别为圆柱W上、下底面的直径.

Ⅰ)证明:平面ADHF⊥平面BCHF

(Ⅱ)若PDC的中点,求三棱锥HAGP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:为偶函数;

2)设,若对任意的恒成立,求实数k的取值范围.

3)是否存在正实数,使得在区间上的值域刚好是,若存在,请写在所有满足条件的区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足;对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.已知函数.

)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

)若上的有界函数,且的上界为3,求实数的取值范围;

)若,求函数上的上界的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,若p为常数),则称等方差数列”.下列是对等方差数列的判断,正确的是(

A.不是等方差数列;

B.既是等方差数列,又是等差数列,则该数列为常数列;

C.已知数列是等方差数列,则数列是等方差数列;

D.是等方差数列,则(k为常数)也是等方差数列.

查看答案和解析>>

同步练习册答案