精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0 , 2),(x0+ ,﹣2).
(1)求函数y=f(x)的解析式和单调递增区间;
(2)若当0≤x≤ 时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.

【答案】
(1)解:由题意可得:A=2,

由在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+ ,﹣2),可得:

=(x0+ )﹣x0= ,可得:T=π,

∴ω=2,可得:f(x)=2sin(x+φ),

又∵图象与y轴的交点为(0,1),可得:2sinφ=1,解得:sinφ=

∵|φ|< ,可得:φ=

∴函数f(x)的解析式为:f(x)=2sin(2x+

由2kπ﹣ ≤2x+ ≤2kπ+ ,k∈Z,可得:kπ﹣ ≤x≤kπ+ ,k∈Z,

可解得f(x)的单调递增区间是:[kπ﹣ ,kπ+ ],k∈Z


(2)解:如图所示,在同一坐标系中画出y=2sin(2x+ )和y=m(m∈R)的图象,

由图可知,当﹣2<m≤0或1≤m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根,

当﹣2<m≤0时,两根和为

当1≤m<2时,两根和为


【解析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由图象与y轴的交点为(0,1)求出φ的值,可得函数的解析式,利用正弦函数的单调性可求单调递增区间;(2)在同一坐标系中画出y=2sin(2x+ )和直线y=m(m∈R)的图象,结合正弦函数的图象的特征,数形结合求得实数m的取值范围和这两个根的和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输入n=10,则输出的S=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC. (Ⅰ)求直线PC与平面ABC所成角的大小;
(Ⅱ)求二面角B﹣AP﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1﹣BCDE.
(Ⅰ) 证明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列四个命题: ①当b=0时,函数f(x)在(0, )上单调递增,在( ,+∞)上单调递减;
②函数f(x)的图象关于x轴上某点成中心对称;
③存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;
④关于x的方程g(x)=0的解集可能为{﹣3,﹣1,0,1}.
则正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=loga(ax+1)+bx(a>0,a≠1)是偶函数,则(
A.b= 且f(a)>f(
B.b=﹣ 且f(a)<f(
C.b= 且f(a+ )>f(
D.b=﹣ 且f(a+ )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C的对边分别为a、b、c.已知A﹣C=90°,a+c= b,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.
①若线段AB中点的横坐标为﹣ ,求斜率k的值;
②若点M(﹣ ,0),求证: 为定值.

查看答案和解析>>

同步练习册答案