精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

【答案】1)直线l的普通方程为;圆C的直角坐标方程为;(2.

【解析】

1)由直线的参数方程消去参数可直接得到普通方程;由极坐标与直角坐标的互化公式,可直接得到圆的直角坐标方程;

2)将直线参数方程代入圆的直角坐标方程,结合韦达定理,根据参数的方法,即可求出结果.

(1)由直线的参数方程(为参数)得直线的普通方程为

,,即圆的直角坐标方程为

(2)将直线的参数方程代入圆的直角坐标方程,得

由于>0,

故可设是上述方程的两个实根,

所以

又直线过点P(3,)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的左、右焦点分别为,下顶点为,椭圆的离心率是的面积是.

1)求椭圆的标准方程.

2)直线与椭圆交于两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.

1)求椭圆的标准方程;

2)设,过椭圆左焦点的直线两点,若对满足条件的任意直线,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.

(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;

(2)已知该厂现有名维修工人.

(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;

(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图都是由边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位.依此规律,则第个几何体的表面积是__________个平方单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为下述正整数的个数:的各位数字之和为,且每位数字只能取

(1)求的值;

(2)对,试探究的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为.如果,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.

(1)求这批产品通过检验的概率;

(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为(单位:元),求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若同时满足下列条件:

内单调递增或单调递减;

②存在区间,使上的值域为

那么把叫闭函数.

(1)求闭函数符合条件②的区间

(2)判断函数是否为闭函数?并说明理由;

(3)是闭函数,求实数的范围.

查看答案和解析>>

同步练习册答案