【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为。
(1)求直线的普通方程和圆的直角坐标方程;
(2)设圆与直线交于,两点,若点的坐标为,求。
科目:高中数学 来源: 题型:
【题目】设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,焦点在轴,焦距为2,且长轴长是短轴长的倍.
(1)求椭圆的标准方程;
(2)设,过椭圆左焦点的直线交于、两点,若对满足条件的任意直线,不等式()恒成立,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修.每台机器出现故障的概率为.已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元.该工厂每月需支付给每名维修工人万元的工资.
(1)若每台机器在当月不出现故障或出现故障时有工人进行维修,则称工厂能正常运行.若该厂只有名维修工人,求工厂每月能正常运行的概率;
(2)已知该厂现有名维修工人.
(ⅰ)记该厂每月获利为万元,求的分布列与数学期望;
(ⅱ)以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图都是由边长为1的正方体叠成的几何体,例如第(1)个几何体的表面积为6个平方单位,第(2)个几何体的表面积为18个平方单位,第(3)个几何体的表面积是36个平方单位.依此规律,则第个几何体的表面积是__________个平方单位.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为。
(1)求直线的普通方程和圆的直角坐标方程;
(2)设圆与直线交于,两点,若点的坐标为,求。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为.如果,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为(单位:元),求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为的函数,若同时满足下列条件:
①在内单调递增或单调递减;
②存在区间,使在上的值域为;
那么把叫闭函数.
(1)求闭函数符合条件②的区间;
(2)判断函数是否为闭函数?并说明理由;
(3)若是闭函数,求实数的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com