精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分分)

已知圆,过点作直线交圆两点.

)当经过圆心时,求直线的方程.

)当直线的倾斜角为时,求弦的长.

)求直线被圆截得的弦长时,求以线段为直径的圆的方程.

【答案】(1)(2) (3)

【解析】试题分析:1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;2当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长;(3利用垂径公式,明确的中点,进而得到以线段为直径的圆的方程.

试题解析:

)圆的方程可化为,圆心为,半径为

当直线过圆心 时,

∴直线的方程为,即

)因为直线的倾斜角为且过,所以直线的方程为,即

圆心到直线的距离

∴弦

)由于,而弦心距

的中点.

故以线段为直径的圆圆心是,半径为

故以线段为直径的圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂家举行大型的促销活动,经测算某产品当促销费用为万元时,销售量万件满足(其中 为正常数),现假定生产量与销售量相等,已知生产该产品万件还需投入成本万元(不含促销费用),产品的销售价格定为万元/万件.

(1)将该产品的利润万元表示为促销费用万元的函数;

2)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,D为BC边上的中点,P0是边AB上的一个定点,P0B= AB,且对于AB上任一点P,恒有 ,则下列结论中正确的是(填上所有正确命题的序号).
①当P与A,B不重合时, + 共线;
=
③存在点P,使| |<| |;
=0;
⑤AC=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线的右焦点为,右顶点为

)求双曲线的方程

)若直线与双曲线交于不同的两点,且线段的垂直平分线过点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.a∈R,“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.命题“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命题p:“?x∈R,sinx+cosx≤ ”,则¬p是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A.B.C所对的边分别为a.b.c且,若,则的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

如图,在中, 分别为 的中点,点为线段上的一点,将沿折起到的位置,使,如图

)求证: 平面

)求证:

)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组: ,并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,设命题:函数上单调递减;命题:函数上为增函数,

(1)若“”为真,求实数的取值范围

(2)若“”为假,“”为真,求实数的取值范围.

查看答案和解析>>

同步练习册答案