精英家教网 > 高中数学 > 题目详情
1.已知x=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$,y=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$,则3x2-5xy+3y2的值是289.

分析 由已知利用分母有理化求出x=5-2$\sqrt{6}$,y=5+2$\sqrt{6}$,由此能求出3x2-5xy+3y2的值.

解答 解:∵x=$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$=($\sqrt{3}-\sqrt{2}$)2=5-2$\sqrt{6}$,
y=$\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$=($\sqrt{3}+\sqrt{2}$)2=5+2$\sqrt{6}$,
∴3x2-5xy+3y2=3(x+y)2-11xy
=3×102-11(5-2$\sqrt{6}$)(5+2$\sqrt{6}$)
=289.
故答案为:289.

点评 本题考查代数式的值的求法,是基础题,解题时要认真审题,注意根式性质、分母有理化、完全平方式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在△ABC中,$\overrightarrow{m}$=(2a-c,cosC),$\overrightarrow{n}$=(b,cosB),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大小;
(2)若b=1,当△ABC面积取最大时,求△ABC内切圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C的方程:x2=2py(p>0).
(1)设AB是过抛物线焦点F的弦,A(x1,y1),B(x2,y2).
①证明:y1y2为定值,并求出此定值;
②证明$\frac{1}{|A{F}_{1}|}$+$\frac{1}{|A{F}_{2}|}$为定值,并求出此定值:
③试判断以AB为直径的圆与准线的位置关系并加以证明:
④证明:过A,B分别作抛物线的切线,则两条切线的交点T一定在准线上:
(2)当p=2时,直线y=1交抛物线于A.B两点.已知P(0,-1),Q(x0,y0)(-2≤x0≤2)是抛物线C上一动点,抛物线C在点Q处的切线为l,l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比:
(3)当p=$\frac{1}{2}$时,若抛物线C上存在关于直线l:y=kx+1对称的两点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某山体外围有两条相互垂直的直线型公路,为开发山体资源,修建一条连接两条公路沿山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为L.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和80千米,点N到l1的距离为100千米,以l1,l2 所在的直线分别为x、y轴建立平面直角坐标系xOy,假设曲线C符合函数y=$\frac{a}{x}$模型(其中a为常数).
(1)设公路L与曲线C相切于P点,P的横坐标为t.
①请写出公路L长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路L的长度最短?求出最短长度.
(2)在公路长度最短的同时要求美观,需在公路L与山体之间修建绿化带(如图阴影部分),求绿化带的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知定义在R上的函数f(x),对于任意实数x,y都满足f(x+y)=f(x)•f(y),且f(1)≠0,当x>0时,f(x)>1
(1)求f(0)的值;
(2)证明f(x)在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在“①高一数学课本中的难题;②所有的正三角形; ③方程x2-4=0的实数解”中,能够表示成集合的是(  )
A.B.C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个几何体的三视图如图所示,则这个几何体的体积为64-$\frac{16}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l1经过不同两点A(3,a)、B(a-2,3),直线l2经过不同两点A(3,a)、C(6,5),且l1⊥l2,则实数a的值是(  )
A.0B.5C.-5D.0或5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若f(x)是定义在(0,+∞),对一切x,y>0,满足f(xy)=f(x)+f(y),且当x>1时,f(x)>0
(1)证明:f(x)在(0,+∞)是增函数;
(2)若f(2)=1,解不等式f(x+3)-f($\frac{1}{3}$)<2.

查看答案和解析>>

同步练习册答案